|
||||
|
||||
טוב, אני צריך לחשוב על זה מחר כשאני יותר בפוקוס, אבל נראה לי ששניהם הומאומורפיים לאוסף הפונקציות שמקבלות ערכים 1 ו 1- על [0,1] . |
|
||||
|
||||
ההומיאומורפיזם המדובר יוצא קצת מסובך. הרעיון הוא להציג פרוק תאי של Dinf ו-Sinf שידגים שהם אותו דבר. הפרוק התאי של Sinf הוא קל: יש שני תאים מכל מימד והם פשוט כל הסדרות בהן x_n>0 וx_m=0 עבור m>n, וכנ"ל עם x_n<0. למצוא פרוק שקול לDinf יותר קשה. התאים ממימד אפס הם הנקודות (0,0,0...) ו-(1,0,0,...). התאים ממימד אחד הם: 1) כל הנקודות עם x_i=0 עבור i>0 ו- 0<x_0<1, 2) כל הנקודות עם x_i=0 עבור i>0 ו- x_0<0 איחוד עם כל הנקודות עם x_i=0 עבור i>1 ו- x_1>0 ו- x_0^2+x_1^2=1. באופן כללי: 1) כל הנקודות עם x_i=0 עבור i>n-1 ו- x_n בין 0 ו-1. 2) כל הנקודות עם x_i=0 עבור i>n-1 ו- x_n<0 איחוד עם כל הנקודות עם x_i=0 עבור i>n ו- x_1>0 והן על הקליפה (סכום ריבועים x_i שווה 1). צריך לצייר את זה בשביל להבין. ברגע שרואים שהיחסים בין התאים הם אותו דבר בשני הפירוקים אפשר לבנות את ההומיאומורפיזם במפורש. אחרי שעושים את זה ניתן לראות שהוא ליפשיץ. אחרי זה אפשר להוכיח את המשפט הבא. משפט: אם יש הומיאומורפיזם ליפשיץ בין A (תתקבוצה של X) ו-B (תתקבוצה של Y) ו-X ו-Y מרחבים מטריים שלמים, אז ניתן להרחיב אותו להומיאומורפיזם ליפשיץ בין הסגורים של A ו-B. מ.ש.ל. שימוש במשפט הנ"ל נותן שהכדור והספירה ב-l2 הומיאומורפיים. טל"ח |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |