|
||||
|
||||
1. יש לי חשד סביר ש"רשת טופולוגית" היא תרגום מילולי מרוסית, שלא מקובל בעברית. יש כאן מישהו דובר רוסית שיכול לחפש מושג מתמטי דומה ברוסית? 2. למה אתה מתכוון כשאתה אומר "סוג של גרף"? 3. אתה צודק. |
|
||||
|
||||
עוד לא אמרת מאיפה אתה מכיר את המונח ''רשת טופולוגית''. |
|
||||
|
||||
המורה שלי שמנחה אותי לעבודת הגמר שלי, ד''ר למתמטיקה מרוסיה. |
|
||||
|
||||
(יופי. עכשיו יש לכם עוד אחד בדיון הזה שמדבר בשפה משלו. :-) ) |
|
||||
|
||||
באמת שכחתי שרציתי לשאול: מה בדיוק עושים בעבודת גמר? |
|
||||
|
||||
2. יש כל מיני סוגים של גרפים. לפעמים זה אוסף של קדקודים ואוסף של זוגות-של-קדקודים, ולפעמים - אוסף של קדקודים, אוסף של צלעות, ויחס חילה (עם לכל היותר שני קדקודים לצלע). לפעמים הקדקודים והצלעות שוכנים באיזהו מרחב גיאומטרי (גרף משוכן), ולפעמים לא. לפעמים הצלעות מכוונות, ולפעמים לא. וכו'... |
|
||||
|
||||
את זה אני יודע, אבל לאיזה סוג אתה מתכוון במקרה הזה? האם ל"אוסף של קדקודים, אוסף של צלעות, ויחס חילה (עם לכל היותר שני קדקודים לצלע)"? האם הסוג הזה מאפשר גם 0 קודקודים לצלע? |
|
||||
|
||||
(בקשר ל"את זה אני יודע" - אני מניח שזה יקרה עוד הרבה פעמים, אם נמשיך לדבר על דברים כאלה. לא תמיד אצליח לנחש מה אתה יודע ומה לא :-) ) זה (שוב) תלוי בסוג של מרחבים תאיים שאתה מסתכל עליהם. יש קומפלקסים סימפליציאליים שהחלק החד-ממדי וה-0-ממדי שלהם, המכונה "השלד החד-ממדי", הוא גרף פשוט; ויש מרחבים תאיים (כשאני למדתי, קראו להם קומפלקסי CW) שם יש גם לולאות וצלעות כפולות (אבל אין צלעות ללא קדקודים). |
|
||||
|
||||
אז כנראה ש"רשת טופולוגית" ו"מרחב תאי" הם לא בדיוק אותו דבר 1. השלד החד-ממדי של רשת טופולוגית לא בהכרח יוצר גרף. דוגמה טריוויאלית: רשת טופולוגית על המישור שיש בה 2 פאות וצלע אחת (כלומר, היא מורכבת מ"ישר" אחד שהוא הצלע, שמחלק את המישור כולו לשני "חצאי-מישור" שהם הפאות) 2. מעניין מאוד ששניכם לא הכרתם את המושג. מה שמעלה את השאלה: עד כמה מתמטיקה היא עניין של גיאוגרפיה? עד כמה תחומי העיסוק המתמטיים המרכזיים שונים ממדינה למדינה? האם יש הבדלים משמעותיים בין מה שנחשב במדינות שונות כ"ידע מתמטי כללי" (בניגוד לידע שנמצא בעיקר אצל מומחים בתחום מסוים)? 1 כל הדיאלוג הזה הוא התעלמות אלגנטית מדבריו של אג"ג בתגובה 339164, שגם אמר בדיוק את זה, וגם ציין שהשלד החד-ממדי של מרחב תאי תמיד יוצר גרף. 2 כדי שלא תצטרך לחפש: ההגדרה של רשת נמצאת בתגובה 339095. |
|
||||
|
||||
אתה יכול לתת דוגמאות או לינק לשימוש של רשתות טופולוגיות שאינן מרחב תאי? אני שואל מפני שמרחב תאי הוא מושג שימושי למדי בטופולוגיה אלגברית ושם הדרישה הנוספת היא הכרחית כמעט תמיד. באשר לגיאוגרפיה: יש הבדלים גדולים מאוד בתחומי ההתמקדות לא רק בין מדינות שונות אלא גם (ואולי יותר) בין אוניברסיטאות שונות. אני מדבר עם אנשים שלמדו בעברית ומגלה שהם יודעים מעט מאוד על תורת המידה ואנליזה ואילו הידע שלי באלגברה לוקה בחסר לעומתם. בנוסף, הידע הכללי במתמטיקה הוא רחב מאוד. על מרחבים תאיים, למשל, לומדים בתואר שני. יכול אדם לסיים דוקטורט במתמטיקה ולא לקחת את הקורס הרלוונטי, ולא לדעת כלום על אנליזה ספקטרלית או מה זה Hauptvermutung. |
|
||||
|
||||
אתה לא למדת בעברית? |
|
||||
|
||||
מה אם חקר מאפיינים קומבינטוריים של רשתות טופולוגיות על טורוס, למשל? אפשר לעסוק בהן באמצעות מרחבים תאיים? |
|
||||
|
||||
טוב, רשת טופולוגית על מרחב קומפקטי היא מרחב תאי. מרחב תאי הוא רשת טופולוגית שמקיימת עוד דרישה. כדי לעבוד עם תכונות אלגבריות הדרישה הזו הכרחית ועם תכונות קומבינטוריות היא לא. |
|
||||
|
||||
לא בדיוק אותו הדבר, אבל ההבדל לא ממש עקרוני. כשמשלשים מרחב לא קומפקטי כמו המישור, נותרות פאות פתוחות; אפשר להניח להן לנפשן או לעבור לקומפקטיפיקציה, זה לא נורא משנה. ודאי שיש הבדלים בין תחומי המחקר במקומות שונים. הרבה פעמים נוצרת קהילה מקומית של אנשים המתמחים בנושא מסויים. מצד שני, "ידע מתמטי כללי" הוא מושג אוניברסלי למדי. לפעמים יש קצת הבדלים בטרמינולוגיה, אבל (כמו בדוגמה של הרשת הטופולוגית) זה לא מאוד עקרוני. מטבע הדברים, הבדלים כאלה נוצרו יותר בתכיפות (ויותר לעומק) בימי מסך-הברזל ובטרם היות האינטרנט. עד היום, אני מניח, ההונגרים חזקים ב"לפתור בעיות" והצרפתים ב"להמציא תאוריות". |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |