|
||||
|
||||
1. גם אני לא נתקלתי במונח "רשת טופולוגית". 2. "מרחב תאי" הוא הכללה ממימד יותר גבוה. השלד החד-ממדי של מרחב תאי הוא (סוג של) גרף. 3. כשאתה מדבר על אובייקט מתמטי, ברוב המקרים חשוב להדגיש לא רק את המבנה שלו אלא גם את הטרנספורמציות המותרות. אוסף ספציפי של נקודות, צלעות ופאות כמו שתארת הוא לא מאוד מעניין - מה שמעניין הוא התכונות של אוספים כאלה "עד כדי" משהו: עיוותים רציפים של המישור, או זהות במבנה הקומבינטורי של החילה בין הנקודות, הפאות והצלעות, וכו'. אחת העובדות המרכזיות בתחום הזה היא שלפחות במימדים נמוכים, הקומבינטוריקה מספרת את כל הסיפור הטופולוגי. במימדים גבוהים זה כבר לא כך. |
|
||||
|
||||
1. יש לי חשד סביר ש"רשת טופולוגית" היא תרגום מילולי מרוסית, שלא מקובל בעברית. יש כאן מישהו דובר רוסית שיכול לחפש מושג מתמטי דומה ברוסית? 2. למה אתה מתכוון כשאתה אומר "סוג של גרף"? 3. אתה צודק. |
|
||||
|
||||
עוד לא אמרת מאיפה אתה מכיר את המונח ''רשת טופולוגית''. |
|
||||
|
||||
המורה שלי שמנחה אותי לעבודת הגמר שלי, ד''ר למתמטיקה מרוסיה. |
|
||||
|
||||
(יופי. עכשיו יש לכם עוד אחד בדיון הזה שמדבר בשפה משלו. :-) ) |
|
||||
|
||||
באמת שכחתי שרציתי לשאול: מה בדיוק עושים בעבודת גמר? |
|
||||
|
||||
2. יש כל מיני סוגים של גרפים. לפעמים זה אוסף של קדקודים ואוסף של זוגות-של-קדקודים, ולפעמים - אוסף של קדקודים, אוסף של צלעות, ויחס חילה (עם לכל היותר שני קדקודים לצלע). לפעמים הקדקודים והצלעות שוכנים באיזהו מרחב גיאומטרי (גרף משוכן), ולפעמים לא. לפעמים הצלעות מכוונות, ולפעמים לא. וכו'... |
|
||||
|
||||
את זה אני יודע, אבל לאיזה סוג אתה מתכוון במקרה הזה? האם ל"אוסף של קדקודים, אוסף של צלעות, ויחס חילה (עם לכל היותר שני קדקודים לצלע)"? האם הסוג הזה מאפשר גם 0 קודקודים לצלע? |
|
||||
|
||||
(בקשר ל"את זה אני יודע" - אני מניח שזה יקרה עוד הרבה פעמים, אם נמשיך לדבר על דברים כאלה. לא תמיד אצליח לנחש מה אתה יודע ומה לא :-) ) זה (שוב) תלוי בסוג של מרחבים תאיים שאתה מסתכל עליהם. יש קומפלקסים סימפליציאליים שהחלק החד-ממדי וה-0-ממדי שלהם, המכונה "השלד החד-ממדי", הוא גרף פשוט; ויש מרחבים תאיים (כשאני למדתי, קראו להם קומפלקסי CW) שם יש גם לולאות וצלעות כפולות (אבל אין צלעות ללא קדקודים). |
|
||||
|
||||
אז כנראה ש"רשת טופולוגית" ו"מרחב תאי" הם לא בדיוק אותו דבר 1. השלד החד-ממדי של רשת טופולוגית לא בהכרח יוצר גרף. דוגמה טריוויאלית: רשת טופולוגית על המישור שיש בה 2 פאות וצלע אחת (כלומר, היא מורכבת מ"ישר" אחד שהוא הצלע, שמחלק את המישור כולו לשני "חצאי-מישור" שהם הפאות) 2. מעניין מאוד ששניכם לא הכרתם את המושג. מה שמעלה את השאלה: עד כמה מתמטיקה היא עניין של גיאוגרפיה? עד כמה תחומי העיסוק המתמטיים המרכזיים שונים ממדינה למדינה? האם יש הבדלים משמעותיים בין מה שנחשב במדינות שונות כ"ידע מתמטי כללי" (בניגוד לידע שנמצא בעיקר אצל מומחים בתחום מסוים)? 1 כל הדיאלוג הזה הוא התעלמות אלגנטית מדבריו של אג"ג בתגובה 339164, שגם אמר בדיוק את זה, וגם ציין שהשלד החד-ממדי של מרחב תאי תמיד יוצר גרף. 2 כדי שלא תצטרך לחפש: ההגדרה של רשת נמצאת בתגובה 339095. |
|
||||
|
||||
אתה יכול לתת דוגמאות או לינק לשימוש של רשתות טופולוגיות שאינן מרחב תאי? אני שואל מפני שמרחב תאי הוא מושג שימושי למדי בטופולוגיה אלגברית ושם הדרישה הנוספת היא הכרחית כמעט תמיד. באשר לגיאוגרפיה: יש הבדלים גדולים מאוד בתחומי ההתמקדות לא רק בין מדינות שונות אלא גם (ואולי יותר) בין אוניברסיטאות שונות. אני מדבר עם אנשים שלמדו בעברית ומגלה שהם יודעים מעט מאוד על תורת המידה ואנליזה ואילו הידע שלי באלגברה לוקה בחסר לעומתם. בנוסף, הידע הכללי במתמטיקה הוא רחב מאוד. על מרחבים תאיים, למשל, לומדים בתואר שני. יכול אדם לסיים דוקטורט במתמטיקה ולא לקחת את הקורס הרלוונטי, ולא לדעת כלום על אנליזה ספקטרלית או מה זה Hauptvermutung. |
|
||||
|
||||
אתה לא למדת בעברית? |
|
||||
|
||||
מה אם חקר מאפיינים קומבינטוריים של רשתות טופולוגיות על טורוס, למשל? אפשר לעסוק בהן באמצעות מרחבים תאיים? |
|
||||
|
||||
טוב, רשת טופולוגית על מרחב קומפקטי היא מרחב תאי. מרחב תאי הוא רשת טופולוגית שמקיימת עוד דרישה. כדי לעבוד עם תכונות אלגבריות הדרישה הזו הכרחית ועם תכונות קומבינטוריות היא לא. |
|
||||
|
||||
לא בדיוק אותו הדבר, אבל ההבדל לא ממש עקרוני. כשמשלשים מרחב לא קומפקטי כמו המישור, נותרות פאות פתוחות; אפשר להניח להן לנפשן או לעבור לקומפקטיפיקציה, זה לא נורא משנה. ודאי שיש הבדלים בין תחומי המחקר במקומות שונים. הרבה פעמים נוצרת קהילה מקומית של אנשים המתמחים בנושא מסויים. מצד שני, "ידע מתמטי כללי" הוא מושג אוניברסלי למדי. לפעמים יש קצת הבדלים בטרמינולוגיה, אבל (כמו בדוגמה של הרשת הטופולוגית) זה לא מאוד עקרוני. מטבע הדברים, הבדלים כאלה נוצרו יותר בתכיפות (ויותר לעומק) בימי מסך-הברזל ובטרם היות האינטרנט. עד היום, אני מניח, ההונגרים חזקים ב"לפתור בעיות" והצרפתים ב"להמציא תאוריות". |
|
||||
|
||||
2. כפי שציינתי, יש עוד תנאים שמרחב תאי צריך לקיים. >אחת העובדות המרכזיות בתחום הזה היא שלפחות במימדים נמוכים, הקומבינטוריקה מספרת את כל הסיפור הטופולוגי. במימדים גבוהים זה כבר לא כך. פרט, נמק והרחב. חוץ מזה, אם בטופולוגיה עסקינן, הנה חידה. יהי Rinf מרחב כל הסדרות ב-R שמסתיימות באפסים, עם המטריקה הרגילה. במילים אחרות, איחוד R^n. יהי Dinf כדור היחידה הסגור ב-Rinf. יהי Sinf ספרת היחידה ב-Rinf. האם Dinf ו-Sinf שקולים הומוטופית? האם הם הומיאומורפיים? |
|
||||
|
||||
לא הצלחתי לנחש אם אתה שואל כדי לנזוף בי על הניסוח המרושל, או כדי באמת לשאול. אני אהיה אופטימי... אם רוצים לעסוק באובייקטים קומבינטוריים במקום במרחבים טופולוגיים מאיזשהו סוג, צריך לשאול - האם זה נכון שכל מרחב טופולוגי (מהסוג הרלוונטי) ניתן ל"שילוש" (כלומר, לבנייה מקדקודים, צלעות, פאות וכו'), וחשוב מזה, האם השילוש הוא יחיד במובן מתאים (האם לכל שני שילושים של אותו מרחב יש עידון משותף). אם זה המצב, אפשר להגדיר הגדרות ולנסח משפטים באמצעות המושג הקומבינטורי, ולדעת שהם נשארים תקפים ללא שינוי גם למרחבים הטופולוגיים המקוריים. יריעות (מכל מימד) אפשר לשלש, ואם לא רוצים להצטמצם ליריעות אפשר לדבר על פוליהדרונים (שהם, פשוט, מרחבים ניתנים לשילוש); מרחבים שאינם כאלה הם די פתולוגיים מבחינה גיאומטרית. ה"השערה המרכזית (Hauptvermutung) של הטופולוגיה הקומיבנטורית" היא שהטופולוגיה של הפוליהדרון אכן מכתיבה את הקומבינטוריקה של השילוש. עד מימד 3, זה נכון. ממימד 4 והלאה, זה לא נכון. גם אם מצטמצמים ליריעות, ממימד כלשהו והלאה זה לא נכון (אני לא בטוח אם זה עדיין 4; אולי משהו כמו 7). זו אחת מהסיבות (יש עוד) בעטיין "טופולוגיה ממימד נמוך" היא מקצוע בפני עצמו. |
|
||||
|
||||
אופטימי זה להניח שאני לא יודע? המממ... בכל מקרה, השאלה היתה אמיתית, לא נזיפה. מה לגבי החידה שלי? |
|
||||
|
||||
לדעתי, הם הומיאומורפיים. ההומיאומורפיזם יהיה מ Dinf על Sinf והוא יוגדר כך: f(x_1,x_2,...)=(sqrt(1-norm^2(x)),x_1,x_2,...) שאלה: אם אין לי טעות בהוכחה, אז האם זה גם נכון בכל l_2? כלומר האם הספרה של כדור היחידה הומיאומורפית לכדור היחידה הסגור ב l_2? כי אותה הוכחה תעבוד, ואין בה שימוש בכך שאחרי מספר סופי של אינדקסים יש רק אפסים.
x=(x_1,x_2,...) |
|
||||
|
||||
אופס, לא שמתי לב שזה לא בדיוק על. אני אחשוב על זה עוד קצת... |
|
||||
|
||||
נו יאללה, לא הגיע הזמן לתת פתרון? חלק נראה לי ברור - ספרה במרחב הילברט ממימד אינסופי היא כוויצה. כאן זה לא בדיוק מרחב הילברט, אבל בכל זאת אפשר לבנות כיווץ שכזה (או שנשים לב שמדובר במרחב תאי שיש לו חבורות הומוטופיה כמו של נקודה). משיקולי סימטריה הנחתי שהם לא הומאומורפיים, אבל לא הצלחתי למצוא איזה משהו פשוט שיבדיל ביניהם, ואני חושד שקיים הומאומורפיזם. עכשיו, אם רק תהיה נחמד ותכתוב אותו כאן... |
|
||||
|
||||
בטח שהומיאומורפיים. עכשיו גרמת לי לתהות לגבי הספרה והכדור ב-L2. נדמה לי שחשבתי על זה פעם אבל אני לא זוכר מה היתה המסקנה... הוכחה ב-11. |
|
||||
|
||||
ב 11 לאיזה חודש?... בכל אופן, כבר כתבתי לא מעט שטויות בדיון הזה, אז אני אסתכן בעוד אחת - תוך זריקת המוטו "חשבתי על זה רק שתי דקות". אם כבר השניים הומאומורפיים, נשמע הגיוני שזה ככה גם ב l2. שתי הדקות הללו הביאו אותי למסקנה שהספירה והכדור ב l2 הם ההשלמה של הספירה והכדור בשאלה שלך, ואם זה ככה אז מה השאלה? |
|
||||
|
||||
הכוונה מחר ב-11 :-) הנה משפט שגוי: אם A ו-B הומיאומורפיים כך גם הסגור שלהם. בכל מקרה, במקרה זה זה כנראה נכון. הוכחה ב-11. |
|
||||
|
||||
טוב (מתקפל פנימה וממלמל) ... זה מה קורה כשפונקצית הגישור בין המוח לאצבעות בשתבשת. בתור עונש אני אכתוב מאה פעמים "כל פעם שאתה כותב באייל משהו על מתמטיקה אחרי חצות, בדוק אם R מהווה דוגמא נגדית". |
|
||||
|
||||
אחד הדברים שאני אוהב בדיונים באייל על מתמטיקה הוא שאחוז הפעמים שבהם מישהו אומר "אוקיי, טעיתי" בהם נדמה לי גדול בהרבה מאחוז הפעמים שבהם זה קורה בדיונים על כל נושא אחר. כך מתקבל הרושם שברוב הפעמים שבהן אנשים טועים, הם באמת מודים בזה ומודעים לזה. מצד שני, אני כנראה טועה ו-3,000 ההודעות האחרונות בדיון הזה מוכיחות זאת. |
|
||||
|
||||
חשבתי שהבבושקות והכיווצים הבהירו שזה לא דיון על מתמטיקה. |
|
||||
|
||||
אוקיי, טעיתי. |
|
||||
|
||||
לא, לא, אני מתעקש, *אני* הוא שטעה. נראה לי. |
|
||||
|
||||
טוב, אני צריך לחשוב על זה מחר כשאני יותר בפוקוס, אבל נראה לי ששניהם הומאומורפיים לאוסף הפונקציות שמקבלות ערכים 1 ו 1- על [0,1] . |
|
||||
|
||||
ההומיאומורפיזם המדובר יוצא קצת מסובך. הרעיון הוא להציג פרוק תאי של Dinf ו-Sinf שידגים שהם אותו דבר. הפרוק התאי של Sinf הוא קל: יש שני תאים מכל מימד והם פשוט כל הסדרות בהן x_n>0 וx_m=0 עבור m>n, וכנ"ל עם x_n<0. למצוא פרוק שקול לDinf יותר קשה. התאים ממימד אפס הם הנקודות (0,0,0...) ו-(1,0,0,...). התאים ממימד אחד הם: 1) כל הנקודות עם x_i=0 עבור i>0 ו- 0<x_0<1, 2) כל הנקודות עם x_i=0 עבור i>0 ו- x_0<0 איחוד עם כל הנקודות עם x_i=0 עבור i>1 ו- x_1>0 ו- x_0^2+x_1^2=1. באופן כללי: 1) כל הנקודות עם x_i=0 עבור i>n-1 ו- x_n בין 0 ו-1. 2) כל הנקודות עם x_i=0 עבור i>n-1 ו- x_n<0 איחוד עם כל הנקודות עם x_i=0 עבור i>n ו- x_1>0 והן על הקליפה (סכום ריבועים x_i שווה 1). צריך לצייר את זה בשביל להבין. ברגע שרואים שהיחסים בין התאים הם אותו דבר בשני הפירוקים אפשר לבנות את ההומיאומורפיזם במפורש. אחרי שעושים את זה ניתן לראות שהוא ליפשיץ. אחרי זה אפשר להוכיח את המשפט הבא. משפט: אם יש הומיאומורפיזם ליפשיץ בין A (תתקבוצה של X) ו-B (תתקבוצה של Y) ו-X ו-Y מרחבים מטריים שלמים, אז ניתן להרחיב אותו להומיאומורפיזם ליפשיץ בין הסגורים של A ו-B. מ.ש.ל. שימוש במשפט הנ"ל נותן שהכדור והספירה ב-l2 הומיאומורפיים. טל"ח |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |