|
"א. *לפני* גדל, מי דן במהות המתמטיקה במונחים מתמטיים?
לפני גדל הייתה למתמטיקאים, ובראשם הילברט, תקווה כי יוכלו להוכיח את העיקביות של השיטה האקסיומטית במסגרת השיטה האקסיומטית, אך אז הראה גדל כי מערכת אקסיומטית לא-טריוויאלית (שיש לה לפחות את היכולת של אריתמטיקה עם מספרים-טבעיים) מכילה במיסגרתה משפטים בלתי-כריעים, אשר כדי לנסות להכריע אותם, יש להוסיף אקסיומות נוספות למערכת, וחוזר חלילה לאינסוף.
מצבי אי-כריעות כחלק בלתי-נפרד של מערכת השואפת לכריעות כל משפט במסגרתה, משנה מן היסוד את עצם מושג המערכת האקסיומטית, ממערכת סגורה למערכת פתוחה, כאשר אי-הכריעות שקולה לחץ הרומז לנו, כי לא ניתן לחסום לחלוטין (להגדיר, משורש ג.ד.ר) מערכות אקסיומטיות מעניינות.
למעשה יש השלכה ישירה על הבנת מושג האוסף אינסופי עצמו, אשר לא ניתן להגדיר לו קרדינל מדוייק, בדיוק כמו שלא ניתן להגדיר סופית, מערכת אקסיומתית שיש בכוחה להגדיר אריתמטיקה השקולה לאריתמטיקה של מספרים טבעיים.
על אף התובנות הנ"ל, משקיעה קהילת המתמטיקאים המקצועיים רבות בשיטות התעלמות פסיבית או אקטיבית, כדי להמנע משינוי-הפרדיגמה הנובע ישירות מעבודתו של גדל, הן על מושג המערכת האקסיומתית, והן על מושג האוסף האינסופי.
|
|