|
||||
|
||||
לא הבנתי במה התגובות שלך קשורות לנושא המאמר |
|
||||
|
||||
התגובות שלו *הן* נושא מאמר. |
|
||||
|
||||
"תגובות שלו *הן* נושא מאמר." מה פתאום, הרי לפי המתמטיקאים, המאמר על טרחנים-כפייתיים מתקיים גם ללא הקיום (להלכה או למעה) של טררחן כפייתי, ולכן אי-הבנתו של האייל האלמוני יש לה בסיס איתן. |
|
||||
|
||||
לפי המתמטיקה המונדית, לא יכול להתקיים מאמר על טרחנים כפייתיים, בלי שמתקיים מאמר כזה בצורתו הבסיסית - כלומר, אם יש מאמר על טרחנים כפייתיים, קיים מאמר על טרחנים כפייתיים בלי שקיימים טרחנים. |
|
||||
|
||||
''קיים מאמר על טרחנים כפייתיים בלי שקיימים טרחנים.'' שקול הדבר לקיומה של קבוצה-ריקה. |
|
||||
|
||||
אתה רוצה להגיד שהקבוצה הריקה קיימת אם ורק אם יש מאמר שנכתב על טרחנים כפייתיים *לפני* שהיו טרחנים כפייתיים? נו, טוב. אני הרי כופר בקיומה של הקבוצה הריקה 1. 1 לצורך הדיון. |
|
||||
|
||||
"אתה רוצה להגיד שהקבוצה הריקה קיימת אם ורק אם יש מאמר שנכתב על טרחנים כפייתיים *לפני* שהיו טרחנים כפייתיים?" חלילה, הקבוצה הריקה קיימת אם ורק אם מושג הקבוצה קיים. |
|
||||
|
||||
כמו שציינתי, אין הכרח בקיום הקבוצה הריקה, כדי שתתקיים קבוצה. וכדי שהדיון הזה לא ימשיך להתנהל כמו שהוא מתנהל עכשיו ("כן!", "לא!", "כן!", "לא!") אני אציין שחובת ההוכחה מוטלת עליך. הוכח בבקשה שאם קיימת קבוצה, קיימת הקבוצה הריקה. |
|
||||
|
||||
''כמו שציינתי, אין הכרח בקיום הקבוצה הריקה, כדי שתתקיים קבוצה.'' זה היופי פה, אין פה שום הכרח. אם יש קבוצה, אז היא לא פחות מהקבוצה-הריקה. כמה פשוט, ככה יפה. |
|
||||
|
||||
זה שקבוצה היא "לא פחות מהקבוצה הריקה" (מתי קבוצה היא יותר מקבוצה אחרת? אם היא מכילה אותה?) לא אומר שהיא "מורכבת" מהקבוצה הריקה, ולכן זה לא אומר שהקבוצה הריקה קיימת. כמה פשוט, ככה יפה. |
|
||||
|
||||
"זה שקבוצה היא "לא פחות מהקבוצה הריקה" " משמעותו של משפט זה היא: אם יש קבוצה, אז זאת לפחות הקבוצה-הריקה. הוכחת תלות-הקיום של קבוצה מורכבת בקבוצה לא-מורכבת: אלמנטרי (הגדרה): ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע). ועכשיו דוגמאות והסברים: טענה 1: אם {} לא קיימת, אז {{}} בהכרח לא קיימת. הוכחה לטענה 1: אם {} אינה קיימת ב-{{}} אז {{}} אינו אלא {}, אך {} לא קיימת לכן {{}} אינה יכולה להתקיים ללא {} כאלמנט יסוד שלה. טענה 2: אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת. הוכחה לטענה 2: אם אנו מסירים את הסוגריים החיצוניים של {{}}, {} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}. מסקנה: {} הינה קבוצה אלמנטרית ואילו {{}} הינה קבוצה מורכבת. |
|
||||
|
||||
תגובה 333871. |
|
||||
|
||||
כדי להבין את מושג ההיררכיה אנא עיין בתגובה 334032 תודה, ושנה-טובה. |
|
||||
|
||||
מתמטיקאים אמתיים מסוגלים להבחין בד''כ בין המתמטיקה למציאות. |
|
||||
|
||||
''מתמטיקאים אמתיים מסוגלים להבחין בד''כ בין המתמטיקה למציאות.'' הגדר נא ''מציאות''. |
|
||||
|
||||
מה שחומק מהגדרות. |
|
||||
|
||||
"מה שחומק מהגדרות" חמוד! ספר זאת למתמטיקאים. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |