|
||||
|
||||
אבל הבעיה שלי לא היתה להוכיח את קיום המספרים הטבעיים אלא את קיום המספרים ה*זוגיים*. מושג המספר הזוגי אינו מוגדר ללא אקסיומת הקיום שלו ולכן אקסיומת הקיום של המספרים הזוגיים אינה תכונה משנית של המספרים הזוגיים. |
|
||||
|
||||
"מושג המספר הזוגי אינו מוגדר ללא אקסיומת הקיום שלו" האקסיומה של המספר-הזוגי אינה אקסיומת-קיום, אלא אקסיומה המגדירה תכונה של אלמנט קיים, ואלמנט זה הוא מספר-טבעי כלשהו. אין הדבר נכון לגבי הקבוצה הריקה, כפי שהסברתי בתגובה 331598 . עיין נא גם בתגובה 331627 כדי להבין היטב את עמדתי בנושא. תודה. |
|
||||
|
||||
אני כמעט מבין. אבל נדמה לי שמדובר על אקסיומת הקיום של הקבוצה *הריקה* לא אקסיומת קיום של *קבוצה*. אנו מגדירים *תכונה* של אלמנט קיים. |
|
||||
|
||||
"אנו מגדירים *תכונה* של אלמנט קיים." מושג הקבוצה הוא בפירוש מושג לא מוגדר בתורת הקבוצות, ולכן כל אקסיומה המשתמשת במושג זה גם מקיימת אותו, או במילים אחרות, מושג הקבוצה אינו יכול להתקיים במנותק מהשיטה הפורמלית המגדירה אותו. |
|
||||
|
||||
אז מה? הדילמה שהצגת היתה לגבי הקבוצה ה*ריקה*, לא לגבי מושג הקבוצה. הסברת שאקסיומת הקיום של הקבוצה הריקה ("קיימת קבוצה A כך ש...") היא פגומה, משום שאנו לא יכולים להניח שקיימת קבוצה ריקה כאשר אנו מנתחים את האקסיומה ומכאן היסקת ש x איננה הקבוצה הריקה. (כל זאת בהנחה שאני הבנתי אותך נכון). |
|
||||
|
||||
"הדילמה שהצגת היתה לגבי הקבוצה ה*ריקה*, " לא, הדילמה שהצגתי היא לגבי *הקבוצה הריקה*. |
|
||||
|
||||
אם כך, אני הצגתי דילמה לגבי *טבעי זוגי*. |
|
||||
|
||||
"אני הצגתי דילמה לגבי *טבעי זוגי*." אין פה שום דילמה כי *טבעי* מוגדר לחוד ו-*זוגי* מבוסס על קיומו של *טבעי*. לא כך הם פני הדברים בהגדרת *הקבוצה הריקה*. |
|
||||
|
||||
כדי להמנע מהנחת המבוקש באקסיומת-קיום, מתעלמים המתמטיקאים מתוכן אפשרי של x , כאשר הטענה העומדת בבסיס התעלמות זו היא:"היות ולא הגדרנו מה זאת קבוצה הרי שאנו מקבלים מצב של אי-כריעות x כתנאי ריגורוזי להגדרת A." אם כך, ניתן להבין כי אי-כריעות הינה מצב תקין לחלוטין בניסוח שפה פורמלית, כאשר אי-כריעות זו מאפשרת לנו להכריע. אם כך הם פני הדברים, אז לשם מה אנו צריכים את כל המשחקים הסכולסטיים המבוססים על אי-הידיעה המלאכותית המבוססת על המשפט המכונן "אני לא-יודע שאני יודע". שאלה: מדוע אני טוען כי זהו המשפט העומד בבסיס x ? תשובה: ברור לחלוטין כי מושג הקבוצה אינו מובן אם אין אנו מגשרים בתודעתנו בין המושג "ריק" לבין המושג "לא-ריק". כייון שכך, אנו יודעים היטב מהם מצבי הקיום המינימליים של x , אך במקום להשתמש בידע זה בגלוי ולהגדיר ישירות את הקבוצה הריקה כ-"קבוצה ללא כל תכולה", אנו יוצרים סוכן מלאכותי פרי תודעתנו אנו ששמו הכמת "לכל", ושולחים אותו לעשות בשבילנו את העבודה, תוך התעלמות מוחלטת מתלותו של כמת זה בקיומנו אנו. אם אינך מסכים איתי, הוכח נא, לדוגמא, שהכמת "לכל" אינו יציר תודעתנו. תודה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |