|
||||
|
||||
Victor Sorokine
Shorter, simpler, more clearly, more complete I don't more participate in the discussion about the previous versions of the proof. My final choice is last (September) proof. Here is: Lemma: In prime base n, if whole numbers a = pn + d > 0 (< 0) and b = qn + d < 0 (> 0), where whole d > 0, then a =/ – b (– a =/ b ) by any p and q. Example in base 7: 50 + 3 =/ – (– 50 + 3), 50 + 3 =/ – (– 60 + 3)… PROOF of FLT Case 1: The last digit of the number abc is not equal to zero, or (abc)_1 =/ 0. (1°) Let a^n + b^n – c^n = 0, where for positive integers a, b, c (2°) the number u = a + b – c > 0, u_(k) = 0, u_{k+1} * 0, k > 0. (3°) If the digit u_{k+1} = 1 then we multiply the equality 1° by a 2n. Now u_{k+1} = 2 and the digit (a_{k+1} + b_{k+1} – c_{k+1})_1 = v =/ 0 since v = or 1 ether 2. a^n = a_(k)^n + (n^(k+1))a_{k+1} + (n^(k+2))P_a, b^n = …, c^n = …, and: a^n + b^n – c^n = [a_(k)^n + b_(k)^n – c_(k)^n] + (n^(k+1))[a_{k+1} + b_{k+1} – c_{k+1}] + (n^(k+2))P, where (4°) [a_(k)^n + b_(k)^n – c_(k)^n = U', (5°) (n^(k+1))[a_{k+1} + b_{k+1} – c_{k+1}] + (n^(k+2))P = U", and U'_(k+1) = U"_(k+1) = 0, U'_{k+1} == U"_{k+1} == v > 0. BUT the number U' is positive/negative and number U" is positive/positive. Therefore (cf. Lemma) U' =/ –U". And therefore U' + U" = a^n + b^n – c^n =/ 0. Case 2: (ac)_1 =/ 0, b_(t) = 0, b_{t+1} =/ 0, [or (ab)_1 =/ 0 and c_(t) = 0, c_{t+1} =/ 0] In this case u = a + bn^(nt – 1) – c [or u = a + b – c n^(nt – 1)]. The proof is analogous. The proof is done. P.S. For recent disputants of the forum: a_k, or a_{k} (only for the forums) – the digit at the place k from the end, in the number a (thus a_1 is the last digit); a_(k) – is the k digits’ ending (it is a number) of the number a (a_(1) = a_1) [cf. Revista Foaie Matematică: www.fmatem.moldnet.md/1_(v_sor_05).htm]. V.S. |
|
||||
|
||||
בטענה (2) אני לא מבין משהו. כתוב: the number u = a + b – c > 0, u_(k) = 0, u_{k+1} * 0, k > 0. למה הכוונה u_{k+1} * 0 (ה"פסיק" השני מהסוף)?אני לא רואה שם אף טענה... |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |