בתשובה לeasy, 01/08/05 13:25
for all practical puroses 320994
האם אפשר לבנות מכונה שמכניסים בה אטומים במצב 0 והם יוצאים במצב פסי נתון(לזה אני קורא להחתים)? אם כן, הבעיה בשיכפול הוא מדידת מצב האטום המקורי כדי לאתחל את מכונת ההחתמה. או שהמדידה הזאת בלתי אפשרית, או שמכונת ההחתמה בלתי אפשרית ( או שניהם). רציתי לדעת איזו מכונה לא אפשרית.
for all practical puroses 321028
אין בעיה (עקרונית) לבנות מכונה שהופכת מצב קוונטי נתון Φ למצב קוונטי נתון אחר Ψ. אי אפשר לבנות מכונה שמקבלת כקלט מצב קוונטי שאינו נתון מראש ומודדת אותו. מה שניתן למדוד זה באיזה מצב מתוך סט מסויים של מצבים אורתוגונלים האטום שלפנינו נמצא. אם הוא לא נמצא באף אחד מהמצבים הנ"ל אלא בסופרפוזיציה שלהם, תקבל קריסה של המצב המקורי למצב שמדדת.
for all practical puroses 321029
אוקי, אז העניין הוא שאי אפשר לזהות את המצב הקוונטי של המקור.
for all practical puroses 321098
לא. זה לא העניין. כפי ציינתי בתגובה 320989 ניתן "להחליף" מצב קוונטי עם אטום אחר וניתן אפילו "לשדר" מצב קוונטי ממקום למקום רחוק (טלפורטציה), אבל זה כרוך ב"מחיקת" המצב המקורי.
for all practical puroses 321157
טוב, אשאל אחרת. *למה* אי אפשר לשכפל מצבים?
for all practical puroses 321165
ההוכחה היא לא מסובכת/
בוא נגביל את עצמנו למערכת עם שני מצבים: <0| ו-<1|. נניח שיש לנו מצב נתון לא ידוע:
|Ψ>=a|0>+b|1>
נניח שקיימת טרנספורמציה שמקיימת:
U(|Ψ>|0>)=|Ψ>|Ψ>=(a|0>+b|1>)(a|0>+b|1>)=aa|0>|0>+ab|0>|1>+ba|1>|0>+bb|1>|1>)
אבל בתורת הקוונטים, כל טרנספורמציה היא ליניארית ולכן:
U(|Ψ>|0>)=U(a|0>|0>+b|1>|0>)=aU(|0>|0>+bU(|1>|0>)=a|0>|0>+b|1>|1>
וקיבלנו תוצאה שונה לחלוטין. (שים לב, טרנספורמציה מהסוג השני קיימת - זהו שער C-Not).
for all practical puroses 321168
עכשיו הבנתי. תודה!

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים