|
לא כזו בורות. מדובר בהגדרה חדשה למושג "מספר" שנתן ג'ון קונווי, וזכתה לשם surreal numbers נדמה לי ע"י Knuth. ההגדרה פשוטה מאוד, אם כי קשה להבין את התחכום שלה בלי לעבוד קצת. כדי לא להתבלבל עם מספרים "רגילים", נקרא להם לרגע "מרפסים".
1. אם L ו-R קבוצות של מרפסים, ואף מרפס ב-L איננו גדול מאף מרפס ב-R, אז יש מרפס {L|R}. כל המרפסים הם כאלה.
2. אם נתונים שני מרפסים
x = {Lx|Rx}
y = {Ly|Ry}
אז x קטן או שווה ל-y אםם y איננו קטן-או-שווה מאף מרפס ב-Lx, ואף מרפס ב-Ry איננו קטן-או-שווה ל-x.
כאמור, דרושה קצת מחשבה כדי להבין איך ההגדרות הללו בכלל עובדות1, אבל הן עובדות מדהים: אפשר להגדיר כפל וחיבור על המספרים ("מרפסים") הללו ולראות שיש ביניהם את כל הטבעיים, שלמים, רציונליים, ממשיים, סודרים, מספרים אינפיניטסימליים ועוד שלל מספרים שלא נהגו מעולם, כמו השורש השלישי של אומגה-ועוד-אחד ("אומגה" הוא הסודר האינסופי הראשון).
אפשר לקרוא עליהם בויקיפדיה, וכן בספרים של קונווי עצמו, קנות, גרדנר ואחרים.
1 למשל, ההגדרה של מרפס נשענת על מרפסים אחרים, אז איך מתחילים בכלל? הטריק: גם לפני שיש איזשהו מרפס, יש לנו כבר *קבוצה* של מרפסים, דהיינו הקבוצה הריקה φ, ואם ניקח גם את L וגם את R להיות קבוצות ריקות נקבל מרפס {φ|φ}, הלא הוא 0.
|
|