בתשובה לאלון עמית, 15/07/05 1:45
ספר מומלץ בנושא 317138
את הספר של נייגל וניומן קראתי בעברית ובאנגלית. מדובר בספר קצר מאוד, שמציג את ההוכחה מאפס ידע, עם קצת רקע היסטורי וקצת מסקנות. הוא לא רע, אבל קצת מאכזב: הוא מראה מה זה מערכת פורמלית, ונותן את הטעם, ואז מראה פורמלית את הצעדים הראשונים בהוכחה (המספור) - אבל אז עובר לתיאור ההוכחה בנפנופי ידיים. קצת חבל, כי לדעתי אחרי שהוא בנה את הרקע הוא כבר לא רחוק מלהציג את ההוכחה הפורמלית במלואה (או כמעט במלואה - נניח, ברמה של GEB) - ומבחינת מה שזה מקנה לקורא, ההבדל הוא של שמיים וארץ.

הוא גם גרם לי לפדיחה קטנה. ב-‏2000 נערך באוניברסיטת חיפה כנס פילוסופי לכבודו של סול קריפקה (שאגב, הרצה בכנס על הצגת משפט גדל לסטונדטים). בסוף לימודי מדעי המחשב שלי ולקראת לימודי הפילוסופיה, החלטתי לבקר. מעיון בתוכניה גיליתי שנייגל הוא המרצה הראשון שם, ודיווחתי על כך לטל כהן. טל מיהר לצייד אותי בעותק של הספר, שאנסה להחתים עליו את נייגל. בהפסקה הראשונה ניגשתי אליו, וביקשתי את חתימתו. בעוד קריפקה צוחק לצידו "I can't believe this is still happening to you", אמר לי תומס נייגל, גם הוא אחד מכוכבי הפילוסופיה במאה העשרים, שהוא מוכן, אבל שאקח בחשבון ששותפו של ניומן לכתיבת הספר הוא ארנסט נייגל. אין קרבה משפחתית. אילו רק היה לי בתיק את העותק של טל של The Mind's I, והייתי יכול לשלוף אותו ולהחתים את תומס נייגל על "What is it like to be ba bat?"...

באשר לספר של ארנון אברון בסדרת "האוניבסיטה המשודרת", כבר המלצתי עליו באייל המלצה נרגשת, ואני חוזר עליה. הוא לא מנסה בכלל להיכנס לפורמליזם, ולכן רק "מספר על" ולא "מראה את" - בערך באותה רמת פירוט של המאמר שלך. אבל הוא מגיע למשפט גדל רק בסוף, ובדרך מציג את הרקע ההיסטורי, החל ממשבר הגיאומטריות הלא-אוקלידיות. גם נייגל-ניומן וגם GEB עושים זאת, ובהחלט לא רע, אבל אברון עושה זאת בצורה לאין ערוך יותר יפה, מדויקת, ברורה ומרתקת‏1. והוא קצר, מתאים גם לנרתעי-מתמטיקה, ובעברית.

1 למי שלא מכיר את GEB, צריך לציין שאין בזה ביקורת של ממש עליו, ואברון בהחלט לא מייתר אותו: GEB הוא ספר עשיר, בלשון המעטה, והנושא הזה הוא לא החשוב שבו.
ספר מומלץ בנושא 317147
אחלה סיפור... אם אני זוכר טוב, What is it like to be a bat הוא מאמר מוצלח מאוד. אני לא מכיר דברים אחרים של תומס נייגל‏1, ולא היה לי מושג שהוא כוכב פילוסופיה. מעניין.

יש לסול קריפקה הוכחה מעניינת, לא-שגרתית, למשפט הראשון של גדל. אי-אפשר להשתמש בה בשביל המשפט השני, אבל היא נותנת דוגמה למשפט לא-כריע ללא "התייחסות עצמית". גם המשפט של מטייסוויץ' נותן את זה, אבל כנראה שאצל קריפקה זה יותר פשוט. אני לא מכיר את ההוכחה, רק קראתי על קיומה, והזכרת לי ללכת ולחפש.

שכנעת אותי לתור אחר הספר של אברון, זה נשמע כמו משהו שצריך שיהיה בבית.

1 דברים אחרים של ארנסט נאגל (נדמה לי שזה נאגל) אני דווקא כן מכיר, כמו המשפט היפה של נאגל-לוץ.
ספר מומלץ בנושא 317154
אכן מאמר מצוין, אם גם הזכרון שלי לא משקר. טום (גם כך) נייגל פעל בהרבה תחומים של הפילוסופיה - המאמר הזה הוא בפילוסופיה של הנפש, ואוזכר בצדק בדיון הקוואליה - אבל אאל''ט עיקר תהילתו הוא דווקא בתורת המוסר.
ספר מומלץ בנושא 317166
לקריפקה יש הכשרה מתמטית?
ספר מומלץ בנושא 317187
הכשרה? הוא מתמטיקאי מוביל. למיטב ידיעתי הוא המייסד - ואם לא, אז אחד המובילים - של תחום מרכזי בלוגיקה מתמטית - לוגיקה מודאלית (שמכניסה ללוגיקה את המושגים "הכרחי" ו"אפשרי"). אגב, מהלוגיקה המודאלית, נגזרת, אאל"ט, הלוגיקה הטמפוראלית (עם המושגים "תמיד" ו"לפעמים"). ללוגיקה הטמפוראלית יש שימושים מעשיים: היא מרכזית בתחום המגלגל מיליונים של אימות חומרה ותוכנה.
ספר מומלץ בנושא 317194
אהמ... אני רואה שאני בפיגור כבד. נדמה לי שכאן הוא הרצה בעיקר בפילוסופיה, לא? (המסכן הזה שלא התקבל לאוניברסיטה העברית...)
ספר מומלץ בנושא 317199
כן, סביר להניח. מעבר לזה שהוא מתמטיקאי ידוע, אני לא יודע עד כמה הוא באמת נחשב גדול; ואילו בפילוסופיה, הוא בלי ספק נחשב גדול. באותו כנס הציג אותו עדי צמח, אם הבנתי נכון, כפילוסוף הגדול ביותר במאה העשרים; נראה לי שזו הגזמה, אבל לפחות בפילוסופיה של הלשון, בחצי המאה האחרונה, זו טענה סבירה.
ספר מומלץ בנושא 317204
עדי צמח מעריץ את קריפקה הערצה כבדה. צריך להודות, שהוא תמיד הגיע להגזמות פרועות ביחס אליו - פרועות עד כדי גיחוך. אני זוכרת הרצאה של קריפקה (בודדת, לא במסגרת קורס), שבסופה נתנו זמן לשאלות. צמח היה השואל הראשון. הוא ניצל את האפשרות כדי לתת הרצאה מקוצרת משלו, שבה הזכיר את קריפקה בכל משפט ממש, וקרא לו "סול" בניסיון להוכיח קרבה לגאון המדהים. קריפקה, לעומת זאת, התחיל לענות לאחר שנשאלו כל השאלות, ענה לכולם חוץ מצמח, ולבסוף - כבדרך אגב - אמר - "Prof. tsemach said something also. I'm not sure what"...
ספר מומלץ בנושא 317230
זו רק שאלה של טרמינולוגיה, אבל נדמה לי שלוגיקה מודאלית לא נחשבת לחלק מלוגיקה מתמטית. היא בוודאי ענף מרכזי בלוגיקה באופן כללי.

(זה בכלל לא חשוב, כמובן, אם צריך או לא צריך להגדיר את סול קריפקה כ''מתמטיקאי'').
ספר מומלץ בנושא 317287
אז אשמח לחדד את הטרמינולוגיה שלי: מה ההבדל בין לוגיקה באופן כללי ללוגיקה מתמטית? ואם אתה כבר כאן, האם בלימודי המתמטיקה שלך נתקלת בקריפקה?
ספר מומלץ בנושא 317293
אלון משתמש ב''לוגיקה מתמטית'' לתאר את הלוגיקה המשמשת לתיאור המתמטיקה בכללותה. לוגיקה מודאלית שימושית לתיאור כל מני מערכות מתמטיות, כפי שכתבת, אבל לא לתיאור המתמטיקה.
ספר מומלץ בנושא 317331
תודה. אני חושב שהבנתי, אבל אם כן - לא ניסחת במדויק. לוגיקה מתמטית משמשת לתיאור המתמטיקה בכללותה, אבל היא עושה זאת על-ידי תיאור מערכות מתמטיות ספציפיות - מערכות שמעניינות מתמטיקאים. לוגיקה מודאלית שימושית לתיאור מערכת ש*אינה* מעניינת במיוחד מתמטיקאים (לא-לוגיקנים).
ספר מומלץ בנושא 317311
אני יודע ממש מעט על לוגיקה באופן כללי (למשל, בלוגיקה מודלית נתקלתי ממש מעט פעמים, באורח לגמרי לא מקיף), וקשה לי להשיב על השאלה. בלימודי המתמטיקה שלי לא נתקלתי בקריפקה, אבל חלק ממש קטן מהם היה מוקדש ללימוד לוגיקה מתמטית - יותר מעניין לשאול אם אורי גוראל-גורביץ' נתקל בו.
נתייחס לשאלה כאילו נשאלה 317316
לא זכור לי שנתקלתי, אבל:
א) למרות שאלון מחזיק ממני בלוגיקה וקבוצות, זה לא ממש התחום שלי, לא כל שכן לוגיקה מודאלית.
ב) יש לי זכרון נוראי לשמות של משפטים מתמטיים‏1 ול"מי עשה מה". למען האמת אני מופתע כל פעם מחדש כשאלון שולף איזה "על פי משפט גזונטהייט-מטיסביץ לכל..."

1 ולמעשה גם למשפטים עצמם.
ספר מומלץ בנושא 319912
יש הסברים לא רעים ב- http://plato.stanford.edu/entries/logic-modal/
מזכירים שם גם את C. I. Lewis ממציא הלוגיקה המודאלית, ואת David Lewis, פילוסוף מאוד חשוב בזכות עצמו שעסק רבות בבעיית ה conditionals וב- causality ונדמה לי שפיתח את "לוגיקת עולמות אפשריים".

מהמעט שאני זוכר על קריפקה (וכבר לא נגעתי בפילוסופיה כשנה וחצי, אז לקחת בעירבון מוגבל) הוא תרם תרומה חשובה לא רק ללוגיקה אלא אף לבעיית "שמות פרטיים" (proper names) בפילוסופיה של הלשון.
ספר מומלץ בנושא 319914
אתה זוכר נכון. קריפקה (בהקשר זה, אולי ''סול'') עסק הרבה בבעיית ''שמות פרטיים''.
עדכון 320389
בעקבות שאלתך, ישבתי וקראתי את הפרק האחרון בספר של בולוס, ברג'ס וג'פריז, העוסק בלוגיקה מודאלית. בעקבות זאת:

1. כבר כן נתקלתי בלוגיקה מודאלית במסגרת לימודי הלוגיקה-מתמטית (הלא פורמליים) שלי.

2. כבר כן נתקלתי בקריפקה בלימודי המתמטיקה (הלא פורמליים) שלי.

3. למדתי שלוגיקה מודאלית היא (גם) ענף (איני יודע כמה גדול, או חשוב) בלוגיקה מתמטית.

4. למדתי משפט של קריפקה, ואני יכול לאשר שהאיש מוכיח משפטים במתמטיקה. אם יש לו או אין לו הכשרה מתמטית אין לי מושג (יפתיע אותי אם לא, אבל זה לא משנה).
עדכון 320392
איזה עיסוק יש ב"לא הכרחי" בלוגיקה מתמטית?
עדכון 320396
אותו עיסוק שיש ב"יכיח" או "שקול": לוקחים ביטוי מהשפה המדוברת, במיוחד כזה בו אנשים עושים שימוש כשהם טוענים טענות, ומנסים לפרמל אותו. לוגיקה מודאלית מנסה לפרמל את "הכרחי ש-": ממציאים לזה קיצור (סימן של ריבוע), מחפשים אקסיומות שיביעו את הדרך בה משתמשים בו, ורואים מה קורה (אילו מין מודלים נוצרים, אילו מסקנות אפשר להסיק מהאקסיומות).
עדכון 320407
לא התכוונתי לשאול מה פירוש ''לא הכרחי'', אלא איזה מין שימוש אפשר לעשות בו.
עדכון 320413
אני לא בטוח שאני מבין את השאלה. אני יודע שאפשר לפרש את ''הכרחי'' כ''יכיח'' וכך לתרגם משפטים מלוגיקה מודאלית לטענות סטייל-גדל על יכיחות, אבל די ברור שלא זו היתה המוטיבציה לפיתוח התורה. פשוט, מנסים לבחון, בכלים פורמליים, ארגומנטים פילוסופיים (ישנים) על המושג ''הכרחי ש-''.
ספר מומלץ בנושא 317179
תודה

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים