|
אנסה גם אני להסביר. כל הספינים שתמדוד תגלה שהם כפולות של יחידת ספין בסיסית. לספין עצמו יש יחידות (של תנע זויתי) אבל לנו לא כל כך חשוב גודל הספין או הגודל של יחידת הבסיס. יותר פשוט ומספיק לציין את רק את הכפולה 0, 1/2, 1, 3/2, 2 (וכו' וגם השליליים שלהם). גם המטען החשמלי הוא כזה (לחלקיקים השונים יש פעם אחת, פעמיים וגם יותר של מטען האלקטרון, אבל לא חצי או רבע שלו ולא נסתבך פה עם הקוארקים). לעומת כל הגדלים הללו המסות של החלקיקים אינן בעלות מידה משותפת ולא ניתן ליצג את כולן ככפולות של יחידת בסיס. ולכן נאמר שמסה אינה מקוונטטת. התכונה הזאת אינה סתמית ואי אפשר לנפנף אותה ע"י הנחת יחידת הבסיס פשוט קטנה מאוד. למעשה אם נכנסים לתאוריה של המודל הסטנדרטי (ואני ממש לא יכול לעשות זאת) רואים שהמסות מוכנסות לתאוריה כפרמטרים חיצוניים (קבועי צימוד של האינטראקציות השונות) וחלק גדול מהמשחק המתמטי המסובך של המודל הוא איך לייצר מן הקבועים הללו את מסות החלקיקים. כמה תוצאות והשלכות של מה שכרגע אמרתי: א. הפורמליזם המתמטי הזה מבטא את הקשר האבסולוטי בין המסות של החלקיקים לבין האינטראקציות ביניהן. במקום כלשהו ראיתי שנכתב שפיזיקת החלקיקים המודרנית נפטרה מהמושגים של חומר וגופים והיא בעצם מפרשת את כל הפיזיקה (כולל את מושג המסה) ע"י האינטראקציות בין השדות. אפשר אולי לנסח זאת כך: אם השדות לא היו מגיבים זה עם זה, לא היינו יכולים לחוש (=למדוד) אותם ומבחינת הפיזיקה הם לא היו קיימים. המסה היא ביטוי כמותי של יחסי התגובות בין חלקיקים שונים ולא של תכונה פנימית ועצמאית של חלקיק, כפי שהיינו רוצים להאמין אינטואיטיבית/קלאסית. (אני חושב שזה מתקשר לתפיסה הקוונטית שהוצגה בסדרת המאמרים כאן: התלות של הגודל הנמדד בעצם המדידה). ב. הצורה בה אנו משתילים את קבועי הצימוד (המסות) לתוך המודל, מרמזת לכך שהמודל הנכחי אינו שלם והוא אולי רק נגזרת של מודל סופי שבו המסות יגזרו ממודל קוואנטי ולא יושתלו בצורה חיצונית כדי להתאים לתחזיות של היחסות הכללית. ג. הפיתוחים המתמטיים הנותנים את הקשרים בין הרבה (19+10) קבועי הצימוד (הקלט) לבין המסות (ועוד כמה גדלים משונים, הפלט) מסבירות מדוע המסות במודל הנכחי אינן בעלות מידה משותפת (כי הנסחאות מכילות כל מיני מספרים אירציונליים, שורשים וכו').
עוד כמה הערות על הספין: 1. קודם כל כדאי לדעת שיש יותר מספין אחד (למשל יש איזוספין שזה הספין של המטען החלש ועוד ועוד). 2. על הספין המקורי שהוא הספין של המטען האלקרומגנטי כדאי לחשוב כעל פיזור מרחבי של מטען חשמלי המסתחרר סביב צירו (כלומר מגנט). כפי שכבר אמרנו הספין אינו קשור לשום מטען חשמלי מרחבי ולשום סיבוב (שכן גם לחלקיקים ללא מטען חשמלי יש ספין וכך גם לחלקיקים נקודתיים שלא יכול להיות להם לא פילוג מטען ולא סיבוב), הוא רק מתנהג כך במודלים המתמטיים. (למשל חלקיק עם תנע זויתי אמיתי יכול להעלם ולהופיע בצורה של חלקיקים נקודתיים שאין להם תנע זויתי אבל יש להם ספין). אפשר לחשוב על ה"סחרחרת" המגנטית שלנו כעל קוטב N (ספין 1/2-) ועל סחרחרת בכיוון ההפוך כעל קוטב S (ספין 1/2+). עכשיו החלקיקים שלנו ינהגו כשני מגנטים קטנים וימשכו זה אל זה (זוהי הסיבה שבכל מסלול אטומי יושבים 2 אלקטרונים עם ספין 1/2+ ו-1/2-). לעומת זאת 2 קטבי N ידחו זא"ז. למעשה כדי לקרב 2 קטבים כאלו למרחק 0 דרושה אנרגיה אינסופית והופ ואללה: הנה עקרון פאולי האומר ש-2 פרמיונים (בעלי אותו ספין) אינם יכולים לשבת באותה נקודה. הפוטון (שהוא דוגמה של חלקיקים עם ספין שלם - בוזונים) משול לדו-קוטב SN הסגור על עצמו כך שאינו מפעיל דחייה/משיכה מגנטית החוצה ולכן אינסוף בוזונים יכולים לשבת על ראש סיכה (למעשה על נקודה) וזהו החלק השני של עקרון פאולי. ושוב זכרו אין לא מטען, לא סיבוב ולא מגנט, אבל עקרון פאולי הוא יש ועוד איך.
|
|