|
||||
|
||||
ב"מכניקה אנליטית" הטכניוני שעשיתי (לשווא) ב~1998 לא דובר עליהם, או שבאמת הדחקתי קשות. |
|
||||
|
||||
נדמה לי שבגולדשטיין יש פרק מיוחד רק על זה , בקשר לגופים צפידים. אני חושב שקווטרניונים הם בעצם מטריצות פאולי, אבל לא התעסקתי בזה שנים. |
|
||||
|
||||
כשאתה כותב "גולדשטיין" אתה מתכוון ל"ברוך הגבר"? |
|
||||
|
||||
הגיוני. בקורס האמור למדנו פרקים נבחרים מגולדשטיין, אבל לא את כולו. |
|
||||
|
||||
אם אני זוכר נכון, האוסף שכולל את מטריצות פאולי ואת מטריצת היחידה 2x2 הוא קווטרניון שמופיע לא מעט בפיזיקה קוונטית. |
|
||||
|
||||
אם אני לא מפספס שום דבר, זה צריך להיות נכון לכל הצגה של חבורת הספין. |
|
||||
|
||||
אתה כמעט זוכר נכון. גם מטריצות פאולי וגם הקווטרניונים הם ספינורים, גם מטריצות פאולי וגם הקווטרניונים הם אלגברת קליפורד מסדר שני. אבל החתימה שונה. מטריצת פאולי בריבוע היא מטריצת היחידה, והקווטריון בריבוע הוא מינוס אחד. i כפול מטריצות פאולי זאת הצגה של הקווטריונים. |
|
||||
|
||||
אתה כמובן צודק. אפילו מצאתי את זה באיזו מחברת. האם גם ממטריצות גאמא ניתן ליצור קווטרניונים? |
|
||||
|
||||
אני מניח שכן. לפי http://mathworld.wolfram.com/DiracMatrices.html כל שלישיה, סיגמא או רו, מתנהגת דומה למטריצות פאולי, ולכן אפשר לבנות ממנה קוטריונים בתוספת i. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |