בתשובה לאלון עמית, 11/04/05 9:34
שימושים של קווטרניונים 291794
האם לדעתך אפשר להיתקל בקווטרניונים במסגרת קורס לתואר ראשון, ואם כן, איזה? אם לא, איפה אתה ממליץ להתחיל לקרוא בנושא?
שימושים של קווטרניונים 291796
בזמנו היה תרגיל בקורס בתכנות מונחה עצמים בטכניון שבו נדרשו הסטודנטים (ועבדך הנאמן ביניהם) לממש קווטרניונים ב-C++, ובמיוחד לממש את העמסת האופרטורים הנדרשת, אבל נראה לי שזה לא מה שאתה מחפש.
שימושים של קווטרניונים 291802
במכניקה של פיסיקאים ובפרט במכניקה אנליטית.
שימושים של קווטרניונים 292515
ב"מכניקה אנליטית" הטכניוני שעשיתי (לשווא) ב~1998 לא דובר עליהם, או שבאמת הדחקתי קשות.
שימושים של קווטרניונים 292527
נדמה לי שבגולדשטיין יש פרק מיוחד רק על זה , בקשר לגופים צפידים. אני חושב שקווטרניונים הם בעצם מטריצות פאולי, אבל לא התעסקתי בזה שנים.
(לא יכולתי להתאפק) 292542
כשאתה כותב "גולדשטיין" אתה מתכוון ל"ברוך הגבר"?
שימושים של קווטרניונים 292790
הגיוני. בקורס האמור למדנו פרקים נבחרים מגולדשטיין, אבל לא את כולו.
שימושים של קווטרניונים 292943
אם אני זוכר נכון, האוסף שכולל את מטריצות פאולי ואת מטריצת היחידה 2x2 הוא קווטרניון שמופיע לא מעט בפיזיקה קוונטית.
שימושים של קווטרניונים 292947
אם אני לא מפספס שום דבר, זה צריך להיות נכון לכל הצגה של חבורת הספין.
שימושים של קווטרניונים 293012
אתה כמעט זוכר נכון. גם מטריצות פאולי וגם הקווטרניונים הם ספינורים, גם מטריצות פאולי וגם הקווטרניונים הם אלגברת קליפורד מסדר שני. אבל החתימה שונה. מטריצת פאולי בריבוע היא מטריצת היחידה, והקווטריון בריבוע הוא מינוס אחד. i כפול מטריצות פאולי זאת הצגה של הקווטריונים.
שימושים של קווטרניונים 293020
אתה כמובן צודק. אפילו מצאתי את זה באיזו מחברת. האם גם ממטריצות גאמא ניתן ליצור קווטרניונים?
שימושים של קווטרניונים 293165
אני מניח שכן. לפי http://mathworld.wolfram.com/DiracMatrices.html כל שלישיה, סיגמא או רו, מתנהגת דומה למטריצות פאולי, ולכן אפשר לבנות ממנה קוטריונים בתוספת i.
שימושים של קווטרניונים 291803
לא סביר במיוחד, אני חושש. יש ספר חמוד של Conway & Guy שנקרא "The Book of Numbers", ואם אינני טועה יש בו פרק על הקווטרניונים; זה מתאים להקדמה חביבה ולא מחייבת.

יש ספר רציני הרבה יותר, נדמה לי של Ebbinghaus ועוד אנשים, שנקרא פשוט "Numbers". אני מכיר אותו רק מעלעול, אבל כדאי לך לנסות, הוא נראה טוב.

אם אתה אוהב תורת-המספרים, אתה צריך לקרוא את Hardy & Wright, שם מוכיחים (גם) שכל מספר הוא סכום של ארבעה ריבועים תוך שימוש (גם) בקווטרניונים.

אני זוכר שבספר של Arfken על שיטות מתמטיות לפיזיקאים יש דיון בקווטרניונים, מן הסתם תלמד משם על אפליקציות מסוגים אחרים.
שימושים של קווטרניונים 291808
יש ספר של אדלר (http://www.sns.ias.edu/~adler/) שניסה לבנות מכניקת קוונטים מעל הקווטריונים
שימושים של קווטרניונים 291809
יש לך מושג *למה* הוא ניסה לעשות זאת? (הוא לא נראה כמו טרחן כפייתי...).
שימושים של קווטרניונים 291811
כן (יש לי מושג), והוא לא היחידי.
שימושים של קווטרניונים 291814
אתה מאלה שאין טעם לשאול אותם אם יש להם שעון, נכון?

(רק אם בא לך, ואם אפשר במסגרת קצרצרה כזו).
שימושים של קווטרניונים 291816
אני מצטער, פירוט נוסף יעלה לי בחשיפת זהותי. אם תרצה, אוכל לתת לך תשובה מפורטת יותר בדוא''ל.
שימושים של קווטרניונים 291818
בשמחה.
שימושים של קווטרניונים 291828
המקום הטבעי הוא קורס בתורת החוגים (אבל בשלב הזה הם מופיעים בעיקר כדוגמא לחוג לא קומוטטיבי עם חילוק).
שימושים של קווטרניונים 291853
בדיוק בתפקידם זה ראיתי אותם בקורס אלגברה מודרנית ח' בטכניון (גדי, אתה טכניוניסט, נכון?)
שימושים של קווטרניונים 291887
כן, אבל לא מברי המזל שלומדים אלגברה מודרנית ח', אלא מבחו''ש.
שימושים של קווטרניונים 291886
זה מאוחר מדי בשבילי, אם כי באמת שמעתי שבסמסטר אחר כן הביאו אותם כדוגמא. אבל אני מניח שבתור דוגמא מספיק לי לחפש בהרשטיין ושות'.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים