|
||||
|
||||
כפי שציינו כאן, משפט פרמה עוסק בפתרונות למשוואה a^n+b^n=c^n כאשר n הוא מספר כלשהו; בלי שהראשוניים מופיעים בכלל בבעיה, הם נכנסים בדלת הראשית אל הפתרון: מספיק להוכיח שלמשוואה הזו אין פתרון כאשר n ראשוני (או כאשר n=4). אחד היתרונות של החיבור והכפל על פני # ו- //: הן מקיימות זהויות (למשל: a*(b*c)=(a*b)*c), ש- # לא מקיים כדוגמתן. בתור פונקציה מ"רמה נמוכה" יותר מהחיבור, אני יכול להציע את x%y=log(exp(x)+exp(y)) המקיימת ביחס לחיבור את אותה תכונה שהחיבור מקיים ביחס לכפל: (log(x*y)=log(x)+log(y.
|
|
||||
|
||||
אההה.. לא הבנתי את הפונקציה הנומכה שנתת, התוכל להסביר עם דוגמאות קונקרטיות ובשפה ליימנית? |
|
||||
|
||||
נגדיר פעולה x%y לפי x%y = log(exp(x)+exp(y)) [הסבר בשפה פשוטה: כדי לחשב את x%y, עליך להכניס למחשבון את x, ללחוץ על exp, ללחוץ על +, להכניס את y, ללחוץ שוב על exp, אז = ובסוף log. (זה יותר פשוט?)]צמד הפעולות % ו- + מקיים כל מה שמקיים הצמד + ו- * (למשל: (x%y)%z = x%(y%z), x+(y%z) = (x+y)%(x+z)). דוגמאות: 1%1=log(2). |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |