|
אתה בטוח שמשפט פרמה מתעסק בראשוניים? עד כמה שידוע לי הוא מדבר על כל שלשה של מספרים טבעיים (כשהחזקה היא מספר טבעי בעצמה וגדולה מ-2).
הקטע עם ה"אטומים" של המספרים הטבעיים בא לידי ביטוי במשפט היסודי של האריתמטיקה, שאומר שכל מספר טבעי (חוץ מ-1) אתה יכול לכתוב כמכפלה של ראשוניים - ודרך ההצגה הזו היא יחידה עד כדי שינוי סדר ההופעה של הראשוניים במכפלה. זה די טוב, כי אם אתה מכיר טוב ראשוניים ותכונות שלהם שנשמרות בכפל, אתה תדע דברים על כל המספרים הטבעיים.
לי עקרונית נראה שהראשוניים כל כך מהוללים לא בגלל קיום התכונה שמגדירה אותם (אי ההתחלקות) אלא בגלל שבזכות התכונה הזו, הם מופיעים במקומות רבים ומשמשים למטרות רבות. הנה דוגמא שאפילו סטודנט לתואר ראשון כמוני מכיר: במקומות רבים במתמטיקה משתמשים במבנה אלגברי שנקרא "שדה". אפשר לחשוב עליו כעל הכללה של קבוצות כמו המספרים הרציונליים, הממשיים והמרוכבים. זו בעצם קבוצה של איברים שמוגדרות עליהם שתי פעולות (שנקראות "חיבור" ו"כפל" אבל יכולות להיקרא גם "קוקוקו" ו"טרלהלה") שמקיימות כל מני תכונות "נחמדות" (למשל, a+b=b+a) וקשורות זו לזו באמצעות חוק הפילוג שאנחנו מכירים מבית הספר (a(b+c)=ab+ac).
עכשיו, נשאלת השאלה איך נראים השדות שיש בהם מספר סופי של איברים (ובפרט כמה איברים יש בהם). מתברר שמספר האיברים בכל שדה סופי הוא חזקה של מספר ראשוני כלשהו. הסיבה שזה דווקא ראשוני נובעת מהתכונות של המספרים הראשוניים, בפרט מהעובדה שאם תיקח שני מספרים שקטנים ממספר ראשוני נתון ותכפול אותם, התוצאה שתקבל לא תתחלק במספר הראשוני ללא שארית (כי אם מספר ראשוני מחלק מכפלה של שני מספרים, הוא בהכרח מחלק אחד משני המספרים).
זו תכונה אחת. אני בטוח שאוטוטו יבואו המתמטיקאים האמיתיים ויביאו תכונות יותר פשוטות ויותר ברורות מזו שאני הבאתי. (מישהו רוצה לדבר על RSA?)
(אגב, ההודעה שלך הייתה רצינית או נסיון חיקוי להודעות של טרחנים?).
|
|