|
||||
|
||||
זו באמת יופי של דוגמה. כמו שניסחת את השאלה, אפשר למצוא פתרונות מפורשים די בקלות (למשל, e בחזקת ln 2), אבל אם מבקשים למצוא שני מספרים *אלגבריים* אי-רציונליים כנדרש, זו נהיית כמדומני חידה קטלנית ויפה. לא ברור לי שבכלל ידוע איזשהו פתרון ספציפי, ובפרט אני לא משוכנע שיש הוכחה ששורש שתיים בחזקת שורש שתיים הוא אי-רציונלי ("ברור" שהוא כזה). זה מזכיר לי מקבץ נחמד של בעיות הקשורות גם לחזקות וגם לדיון על בעיות פתוחות "אלמנטריות" שהיה כאן פעם. 1. נתון מספר c עם התכונה שכל החזקות n^c הן שלמות, לכל מספר טבעי n. האם c בהכרח שלם? 2. נתון מספר c כך ששתיים-בחזקת-c, שלוש-בחזקת-c וחמש-בחזקת-c הם שלמים. האם c שלם? 3. נתון מספר c כך ששתיים-בחזקת-c ושלוש-בחזקת-c הם שלמים. האם c שלם? המצב הוא כזה: התשובה ל-1 היא "כן", וזו חידה חביבה מאוד ולא קלה במיוחד. התשובה ל-2 היא גם "כן", אבל קשה מאוד מאוד מאוד מאוד להוכיח את זה. אני יכול להשיג סימוכין אם מישהו מתעניין. התשובה ל-3, למרבה הפלא, אינה ידועה. אני מניח שהיא גם "כן", אבל ככל הידוע לי איש לא יודע כיצד להוכיח זאת. |
|
||||
|
||||
אם אני זוכר נכון, בספר ''משפטי גדל ובעיות היסוד של המתמטיקה'' של האוניברסיטה המשודרת הכותב מתאר את חידת השורש שתיים בתור דוגמא למשהו עם פתרון לא קונסטרקטיבי, ומוסיף בסוף הערה שלפיה ניתן להוכיח קונסטרקטיבית ששורש שתיים בחזקת שורש שתיים אי רציונלי. משום מה הוא לא מצרף את ההוכחה. |
|
||||
|
||||
מעניין. לא חשבתי על זה, אני אנסה עכשיו יותר ברצינות. |
|
||||
|
||||
גדי זוכר נכון. אולי כדאי שתדע, לפני שאתה מנסה יותר ברצינות, שבספר המדובר כתוב "ידוע כי שורש שתיים בחזקת שורש שתיים אינו מספר רציונלי, ההוכחה לכך קשה לאין שיעור." בהצלחה, בכל מקרה :) |
|
||||
|
||||
אז כמו שראית, "לנסות ברצינות" יכול פשוט להיגמר בזה שאתה נזכר בתותח הנכון :-) אגב, משפט גלפונד-שניידר רחוק מלהיות טריוויאלי, אבל לא הייתי אומר שהוכחתו קשה "לאין שיעור". יש לי מועמדים אחרים לתואר הזה. |
|
||||
|
||||
הספר שגדי ציטט ממנו הוא מ''האוניברסיטה המשודרת'', כלומר הוא אוסף הרצאות (ועוד לקהל הרחב, ובלי לוח). ''קשה לאין שיעור'' הוא קיצור ל''קשה מספיק כדי שלא אוכל לבזבז עליו שיעור''. (כשהייתי בתיכון גיליתי יום אחד את קסמי המשפט ''לשמחתי לא היה שיעור''). |
|
||||
|
||||
משפט מקסים! |
|
||||
|
||||
ליצן שכמוני. משום מה היה נדמה לי שמשפט גלפונד-שניידר לא עוזר פה, והוא כן. אם a אלגברי שאיננו 0 או 1 (למשל, שורש שתיים), ואם b הוא אלגברי ואי-רציונלי (למשל, שורש שתיים), אז a^b טרנסצנדנטי (ובפרט, אי רציונלי). זה משפט חשוב ומסובך למדי; אם אינני טועה, יש הוכחה שלמה שלו בנספח של הספר Algebra של Lang. |
|
||||
|
||||
סקר בלתי מחייב - מתי בפעם הראשונה נתקלת במשפט גלפונד-שניידר? |
|
||||
|
||||
פעם עברתי לידו ברחוב, אבל הוא לא זיהה אותי. זה נחשב? ______ סתם כדי לאושש את טענותיו של השכ"ג. |
|
||||
|
||||
אתה רציני? מה אתה סוקר? נדמה לי שנתקלתי בו בשנה א' של התואר השני. |
|
||||
|
||||
אני מנסה לראות מתי בפעם הראשונה אני עלול להיתקל במשפט הזה שלא בצורה מכוונת. סקרנות של מי שתוהה מה בדיוק מצפה לו בהמשך. |
|
||||
|
||||
הגלפונד ההוא זה אותו האחד של "ניימן", זה עם המפה על שמו? |
|
||||
|
||||
אני לא מצליח לזהות את המושג או המשפט שאתה שואל לגביו. תוכל לפרט? |
|
||||
|
||||
כרגיל אני מבלבל דברים, השם של החבר שלו הוא ניימרק, לא ניימן. המשפט הוא גלפ(ו)נד-ניימרק, שמספר לנו ש C-כוכב אלגברה קומוטטיבית הינה איזומטרית ואיזומורפית אלגברית למרחב הפונקציות הרציפות על אוסף האידיאלים המקסימליים של האלגברה. |
|
||||
|
||||
חשדתי שכך הוא... :-) לא, שותפו של ניימרק הוא ישראל גלפנד (Gelfand), שהיה למיטב ידיעתי מתמטיקאי פורה הרבה יותר מ-Gelfond. |
|
||||
|
||||
אני חושב שהמילה "אוסף" קצת מקלקלת את השלמות הפואטית של הדבר הזה, שהמשפט מספר לנו (ולמרות זאת, מדובר ביצירת מופת). יש מצב להחליף ב"חבורה"? |
|
||||
|
||||
שיפור נוסף היה מתקבל מהחלפת "אידיאלים מקסימליים" ב"אידיאלים מקסימים1". ואנשים עוד מעיזים להתלונן שאין כאן רומנטיקה. ___________ 1- שהם אידיאלים מקסימליים בלי האקסיומה של לי. |
|
||||
|
||||
או משהו כזה. בטח אלון מכיר את הסיפור על המרצה שהתפלא לראות טיפוסים מוזרים מגיעים לסמינר שלו. |
|
||||
|
||||
לא, אבל לא קשה לנחש... :-) |
|
||||
|
||||
נשלחתי לקנות ספר לימוד לאחד מילדי. במבט ראשון על הפתק הייתי בטוח שמדובר בספר על פער הדורות בחברה הקיבוצית. |
|
||||
|
||||
במבט שני היה שם "ראשוניים", או שזה באמת כתוב עם י' אחת? |
|
||||
|
||||
במבט שני היה דגש בפ'. |
|
||||
|
||||
כן, את זה הבנתי... סתם תהיתי אם כתבו ''ראשונים'', כי זו טעות שכבר נתקלתי בה. |
|
||||
|
||||
בינתיים כבר איבדתי את הפתק. מכיון שאישתי כתבה אותו אני מניח שהיה כתוב ראשוניים. |
|
||||
|
||||
הספר אזל ההוצאה ( טיפוסי למשרד החינוך לקבוע ספרי לימוד ואז לא לדאוג לכך שידפיסו אותם), אני רק נשלחתי לקנות אותו. |
|
||||
|
||||
למה פער דורות? פשוט ספר על אנשי העלייה השנייה, ברוח הבחנתו של יהונתן גפן ("סבא שלי היה ביטניק", או משהו בסגנון). |
|
||||
|
||||
ספר, ספר. |
|
||||
|
||||
נו, זהו, שהם ראו את הנושא של הסמינר, וחשבו שמדובר על הרצאה פוליטית-מהפכנית-אנרכיסטית. |
|
||||
|
||||
"באייל הקורא" זאת תשובה מכובדת מספיק, או שאני צריך להמציא משהו? אגב משפט, זה גלפונד-שניידר, או גלפונד נגד שניידר? |
|
||||
|
||||
חס וחלילה, זה ירחיק לעד את מעט הבנות שעוד מגיבות באייל. ולמי שמחפש עוד חידות, ישנה רשימה מסווגת לפי קושי באתר של אונ' פרינסטון: http://www.princeton.edu/~mathclub/puzzles.html |
|
||||
|
||||
לפני 10 שניות, בהודעה של אלון עמית, מעליך. |
|
||||
|
||||
הוכחה קונסטרקטיבית? |
|
||||
|
||||
אני מנסה לפענח אם אתה מתבדח או לא. נכשלתי. בכל אופן, לא ברור לי שיש משמעות לשאלה אם הוכחה מסוג זה היא קונסטרוקטיבית. |
|
||||
|
||||
אם כך אני כנראה לא מבין על מה מדובר בכלל. קורה1. __________ 1- לעתים קרובות מדי |
|
||||
|
||||
הוכחה של משפט מהסוג מהסוג "קיים X" יכולה להיות קונסטרוקטיבית (הנה X) או לא (עושים שמיניות ומראים שיש כזה, אבל לא מראים מיהו). משפט גלפונד-שניידר איננו מהסוג הזה, בדיוק; הוא אומר "לכל x, y עם תכונות מסויימות, ל-x^y יש תכונה אחרת". הוא לא "בונה" כלום; אתה מביא לו x ו-y כנדרש, והוא יבטיח לך שמשהו קורה. יתרה מזו, ה"משהו" שקורה גם הוא לא מהסוג של "קיים", אלא דווקא מהסוג של "לא קיים": x^y *לא* מקיים פולינום עם מקדמים רציונליים. אם המשפט היה אומר, נניח, "...אז x^y אלגברי", היית יכול לשאול אם הוא קונסטרוקטיבי במובן זה שהוא מספק מפורשות פולינום כזה. כל זה הוא קצת סמנטי, כמו שציינו אחרים. אם אני זוכר נכון, אפשר להוכיח את המשפט גם ע"י "אם x^y אלגברי ו(עוד כל מיני תנאים), אז y רציונלי". פה כאילו אפשר שוב לשאול אם מראים "קונסטרוקטיבית" ש-y רציונלי; אני מניח שלא, אבל אני לא חושב שזה אומר הרבה על המשפט. |
|
||||
|
||||
אם כך מה כל העניין הזה קשור לאותה הוכחה קונסטרקטיבית שמחפשים בפתיל הזה (ההיא שהיא אולי קשה ביותר כדברי יובל ואולי קשה אך לא ביותר כדבריך)? חשבתי שאולי הסיבה להבדל בקושי נעוצה בעניין הקונסטרקטיבי. אבל עזוב, חבל על זמנך. |
|
||||
|
||||
(למה חבל?) לא לא, הנקודה שיובל העלה היתה שאפשר להראות ש*יש* זוג מספרים מוזר שכזה1 מבלי להצביע עליו, ואני רק ציינתי שבעזרת משפט ג"ש אפשר *להצביע* על הזוג המוזר (שורש שתיים בחזקת שורש שתיים, שורש שתיים). לצורך כך, אופייה שלה ההוכחה של ג"ש לא רלוונטי: המשפט אומר, מפורשות, ששורש-שתיים בחזקת שורש-שתיים הוא אי-רציונלי. 1 שני אי-רציונליים כך שאחד בחזקת השני הוא רציונלי. |
|
||||
|
||||
לגבי 1- הייתי מגדיר "נגזרת דיסקרטית" על n^c וגוזר מספיק פעמים ( עד הערך השלם של c ועוד אחד). הנגזרת הזאת היא גם שלם ( שלם פחות שלם וכולי) וצריכה לשאוף לאפס כאשר n גדל, אבל מכיוון שערכיה שלמים, היא חייבת לההפך לאפס זהותית בשלב מסויים. לא בדקתי, אבל אני חושב שזה יכול לעבוד. אני לא חושב שהטריק הזה יעבוד לגבי סעיף 2 כי מכפלות של 2 3 5 לא מספיק צפופות. |
|
||||
|
||||
זה באמת עובד (עם עוד קצת פרטים...) עבור סעיף 1, ובאמת לא עובד בסעיף 2. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |