|
||||
|
||||
מערכת שיש בה חיבור וכפל המקיימים כמה תכונות בסיסיות נקראת "חוג" (דוגמאות: המספרים השלמים, או אוסף המטריצות בגודל 2 על 2). חוג נקרא "נילי" (nil ring) אם כל איבר אפשר להכפיל בעצמו מספיק פעמים, עד שמקבלים אפס (למשל: המספרים הזוגיים עם פעולות החיבור והכפל מודולו 32; או אוסף המטריצות בגודל 4x4 מעל החוג הזה). שאלה: נניח ש- R הוא חוג נילי. האם גם חוג הפולינומים במשתנה x מעל R הוא נילי? (רגע למחשבה) השאלה היתה פתוחה קרוב לארבעים שנה, עד שב- 1999 (נדמה לי) הצליחה מישהי לבנות חוג נילי R, כך שחוג הפולינומים ב*שני משתנים* מעליו אינו נילי. לא יודעים אם בדוגמא הזו חוג הפולינומים במשתנה אחד נילי או לא, אבל זו בוודאי דוגמא נגדית לשאלה. (את מי שמפקפק בקונסטרוקטיביות של הדוגמא הזו, אני שולח לקרוא את המאמר). |
|
||||
|
||||
איזה יופי. כדאי לשים לב שמדובר בחוגים בלי יחידה, שבני-אדם מן היישוב לא תמיד קוראים להם חוגים, וגם שהשאלה הופכת לתרגיל קצר ונחמד אם החוג קומוטטיבי. |
|
||||
|
||||
"שדה" הוא אוסף עם פעולות חיבור וכפל המקיים כמה אקסיומות (דוגמאות: המספרים הרציונליים, המספרים הממשיים. אוסף השלמים אינו שדה, כי אחת הדרישות היא שיחד עם כל איבר שונה מאפס יופיע גם ההופכי שלו). אם F הוא שדה, אפשר לבנות ממנו שדה גדול יותר על-ידי הוספת משתנה x: השדה החדש כולל את כל המנות של פולינומים ב-x עם מקדמים בשדה הקטן F. לשדה שמתקבל קוראים (F(x. על התהליך הזה אפשר לחזור עם משתנה נוסף, ולקבל את (F(x,y, וכן הלאה. שאלה. נניח ש- (F(x ו- (L(x הם אותו שדה ("איזומורפיים", בלשון העם). האם זה אומר ש- F ו- L הם אותו שדה? מסיבות גאומטריות1, השאלה מעניינת במיוחד כאשר אחד השדות הוא C (אוסף המספרים המרוכבים), או שדות שנבנו ממנו על-ידי הוספת משתנים. ובכן, הצליחו לבנות דוגמא לשדה K שאם נוסיף לו שלושה משתנים, יתקבל אותו שדה כאילו הוסיפו שלושה משתנים לשדה (F=C(x,y,z. כלומר: (K(a,b,c)=F(a,b,c, בעוד ש- K ו- F שונים. אלא מה, לא יודעים אם (K(a)=F(a ולא יודעים אם (K(a,b)=F(a,b. אחד מבין הזוגות (K,F, K(a),F(a ו- (K(a,b),F(a,b נותן תשובה שלילית לשאלה המקורית, אבל לא ידוע איזה מהם. 1 "גאומטריה" היא כמובן "תכונות של חוגי פולינומים מעל C". |
|
||||
|
||||
Beauville, Arnaud; Colliot-Thélène, Jean-Louis; Sansuc, Jean-Jacques; Swinnerton-Dyer, Peter:
"Variétés stablement rationnelles non rationnelles" (French) [Nonrational stably rational varieties] Ann. of Math. (2) 121 (1985), no. 2, 283--318. |
|
||||
|
||||
שאלה צדדית: כמה מלים בצרפתית צריך לדעת כדי לקרוא מאמר מתמטי בצרפתית? |
|
||||
|
||||
היום שמעתי את פורז (אחרי מכתב הפיטורין, כששאלו אותו אם הוא חושב שאריק שרון יתחרט עד מחרתיים) מדבר צרפתית והבנתי כל מילה. הוא אמר: "סה קומפליט". |
|
||||
|
||||
אף אחת - הם בעצם כותבים אנגלית עם שגיאות כתיב. למשל, Variétés = Varieties (בנוסף המספרים הם ממש אותו דבר. למשל, 456 במאמר צרפתי פירושו "ארבע מאות חמשים ושש", ממש כאילו המאמר היה כתוב באנגלית).
stablement rationnelles = stably rational non = not rationnelles = rational |
|
||||
|
||||
נו, טוף, חייכתי. עכשיו ברצינות: כמה מלים באנגלית צריך לדעת כדי לקרוא ספר מתמטי בשפה זאת? 100? 1000? 10000? |
|
||||
|
||||
כמה מלים צריך לדעת כדי לקרוא ספר ברמת כתה ט' באנגלית? וספר קריאה "סטנדרטי" למבוגרים? וספר מקצועי בתחום מדעי החברה? (אני מניח שהתשובה תהיה איפשהו בין המספר הראשון לשני). (למתרגמים מאנגלית יש לי רק בקשה אחת: תפסיקו לתרגם Theory of Numbers ל"תאוריית המספרים"). |
|
||||
|
||||
אלא איך? |
|
||||
|
||||
''תורת המספרים''. |
|
||||
|
||||
ב''קפטן אינטרנט'' היתה פעם כתבה שהתייחסה ל''תיאוריית המשחק''. היא התפרסמה לא הרבה זמן אחרי שמישהו כתב שם על ''מבני אינפרא'' באינטרנט. |
|
||||
|
||||
והתרגום של "ההסגר" של Greg Egan מלא ב"מצבי אייגן". |
|
||||
|
||||
בספיידרמן 2 יש "שמונת הערכים" במקום "ערך עצמי". |
|
||||
|
||||
למה "ערך עצמי" מופיע בספיידרמן 2? |
|
||||
|
||||
המרצה (לתורת הקוונטים?) של פיטר שואל בהרצאה מה הערך העצמי של האנרגיה של משהו ופיטר עונה שזה ככה וככה אלקטרון וולט. |
|
||||
|
||||
(התכוונת בצרפתית, נכון?) מספיקה מילה אחת: Soit ("יהי"). יותר ברצינות: יש כל מיני סוגים של ספרים ומאמרים. יש "יבשים" המתארים תוצאות מתמטיות עם מינימום טקסט והסברים (הגדרה. למה. למה. טענה. למה. משפט. מסקנה.), ויש כאלה עם רקע, מוטיבציה, היסטוריה, וככה. בשביל להתמודד עם הסוג הראשון מספיק להכיר פעלים בסיסיים, מילות קישור, ולא יותר מכמה עשרות בודדות של מונחים מתמטיים בתחום הנתון. הסוג השני הוא, לפעמים, פרוזה ממש, ואין מנוס מלדעת צרפתית די טוב. |
|
||||
|
||||
חשוב מאד לדעת ש- Corps הם שדות ולא גופה. |
|
||||
|
||||
וגם שקרואסון זה לא תמיד אוכל (תגובה 196297), וגם ש-Anneau זה חוג ולא טבעת (אבל בשביל זה מספיק להכיר את המונח באנגלית). |
|
||||
|
||||
אני פעם הזדקקתי לתוצאה ממאמר כתוב צרפתית (שפורסם, מכל המקומות, דווקא ב- Israel Journal of Mathematics). למרות שהשליטה שלי בצרפתית היא כמעט אפסית, הופתעתי לגלות שהבנתי את הרוב. אם זה לא מספיק, אז אבא שלי סיפר לי פעם על מכר (ישראלי) שלו, שאיתר שגיאה בספר מתמטיקה טורקי. |
|
||||
|
||||
מצד שני, כדי להבין *הרצאה* בפיסיקה בצרפתית כדאי לדעת מעט יותר. פעם, באין קריירה הקודמת שלי, שהיתי באוניברסיטה צרפתית וראיתי הרצאה שכותרתה ( על פי הבנתי) היתה "חקר פני השמש באמצעות אותות מכ"ם". למרות שאני לא מבין באסטרו, הטכניקה נראתה לי מעניינת, אז נכנסתי. ברבע שעה הראשונה הראה המרצה תמונות מכ"ם של כדור הארץ שצולמו מלווינים (כמובן, תוך כדי מילמולים של c'est a dire ו donc. "יופי" ,חשבתי, "הוא מסביר קודם כל על המערכת, ועוד מעט יראה יישומים ". אחרי חצי שעה כבר התחלתי להרגיש שמשהו לא בסדר, ובתום ההרצאה, כשלא ראיתי אף צילום מכ"מ של השמש, חזרתי למשרדי וגיליתי ב לרוס שהמילה sol בצרפתית זה "קרקע" או "ארץ". |
|
||||
|
||||
גיגלת את זה? |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |