|
הצעות ופעילות להקמת מצפי נייטרינים שונים החלו לזרום בד בבד עם התחלת העבודה של דייויס.
הצעה מיידית היתה להשתמש בגלאי רדיוכימי על בסיס גאליום (71Ga ההופך לגרמניום). לתגובה זו אנרגיית סף נמוכה יותר (0.233 MeV) מאשר לכלור. לכן, גלאי זה רואה גם נייטרינים אלקטרוניים סולריים מסוגים נמוכי אנרגיה כמו pp ו-7Be ). גלאי כזה יגלה יותר נייטרינים ובכך ישפר את הסטטיסטיקות, יוכל לספק בדיקה נוספת של מודל השמש (החוזה את יחסי השטף של הסוגים השונים) ובעיקר יספק אינפורמציה נוספת שתוכל לכייל, לאשר ולסתור פתרונות שונים של חידת הנייטרינים החסרים. הבעיה העיקרית היא שהגליום הרבה יותר יקר מאשר הכלור וכן צריך להפוך אותו לנוזלי לצרכי הגלאי. 2 מצפים של גלאי גאליום נבנו. פרוייקט GALLEX של סוכנות המחקר האירופית נבנה במעבדה הלאומית התת-קרקעית (1200 מ') של איטליה ב-Gran Sasso. שם השתמשו ב-30 טון גליום שנמצאו ב-100 טון של תמיסה מיימית של גליום-טריכלוריד. GALLEX פעל במשך 5 שנים (1991-1996). הם השתמשו בחשיפות של 30 יום עם קצב של 1.2 לכידות ליום. השטפים שהם מדדו היו 60 SNU מתוך כ-132 חזויים. תוצאה זו היתה בהתאמה למודל השמש ויכולה להיות מוסברת ע"י אפקט MSW של תנודות הנייטרינים. המצפה ממשיך מאז 1998 בפעולתו תחת השם GNO (Gallium Neutrino Observatory). תוצאות קונסיסטנטיות הוצגו ע"י SAGE במצפה הנייטרינים של Baksan שבהרי הקווקז, בריה"מ. שם השתמשו ב-57 טון של גליום מותך.
סוג שונה של גלאי נבנה ע"י Masatoshi Koshiba במכרה Kamioka (1000 מ' מתחת לקרקע) ביפן. במרכז מחקר זה פועלים כמה פרוייקטים וכמה גלאים, אך הגלאים אינם רדיוכימיים אלא מבוססים על גלי צ'רנקוב (cerenkov). הגלאי הוא מאגר של 50,000 טון מים המוקף ב-11146 מכפילי-אור (photomultipliers). אלו הם שפופרות מיוחדות לגילוי והגברת פוטונים. גלאי כזה מכונה גם liquid scintillator. פרוייקט super-KamiokaNDe (פועל מ-1996) במצפה זה עקב אחרי תגובות של נייטרינים עם אלקטרונים במים (תגובה מסוג פיזור אלסטי). כתוצאה מתגובה כזו האלקטרונים מואצים למהירות העולה על מהירות האור במים. תנועה כזאת יוצרת קרינה אלקטרומגנטית (פוטונים) מיוחדת הנקראת קרינת צ'רנקוב הנוצרת ע"י התפשטות חזית הלם במים (מקביל מעט לבום העל קולי בגלי קול). קרינה זו נמדדת בשפופרות ה-PMT ואפשר לסמן "לכידת נייטרינו". היתרונות של הגלאי ברורים. זהו גלאי Real time, כלומר הלכידה מתגלה מיד ולא פוסט מורטם לאחר תום ימי החשיפה כמו בגלאי רדיוכימי. בצורה זו אפשר לקבל אינפורמציה על הבדלי שטף יום-לילה, עונות, קורלציות עם סופות שמש וכו'. יתר על כן אפשר למדוד את כיוון הקרינה ולהסיק ממנו את כיוון הנייטרינו הפוגע. בצורה זו אישר super-KamiokaNDe כי הנייטרינים הגיעו מכיוון השמש. המגבלה של הגלאי היא שדרושה אנרגיית סף גבוהה יחסית כדי ליצור נצנוץ צ'רנקוב שיכול להתגלות ולכן השטפים הנמדדים הם נמוכים מאוד (0.48 SNU). בכל אופן גם הפרוייקטים super-KamiokaNDe , KamiokaNDe אישרו כי רק 50% מן הנייטרינים הצפויים ע"פ המודל נמדדים.
מצפה מעניין במיוחד הוא (SNO (Sudbury Neutrino Observatory. זהו גלאי מים כבדים הפועל החל מ-1999 ונמצא ב-Sudbury, אונטאריו קנדה. הוא פועל בתוך מכרה ניקל כ-2000 מ' מתחת לפני הים. יש בו 1000 טון מים כבדים נקיים במיוחד המוקפים ומוגנים מרדיואקטיביות ע"י 7000 טון מים רגילים נקיים במיוחד. הערך הכספי של המים הכבדים (שייכים לממשלת קנדה) הוא 300 מיליון דולר. המים צריכים להיות טהורים (נקיים) במיוחד, כדי לאפשר שקיפות לקרינת צ'רנקוב. 9600 שפופרות PMT (מכפילי אור) מקיפות את הגלאי ומוכנות לאתר כל פוטון צ'רנקוב המנצנץ במים. התגובה הנצפית כאן היא עם אטום הדאוטריום (n+p) של המים הכבדים. נייטרינו הפוגע בגרעין עשוי לגרום: Ve + n --> p + -e (תגובת זרם טעון CC), אך גם עשוי רק להפריד את הנייטרון מהפרוטון (תגובת זרם נייטרלי, NC) תוך האצת אחד התוצרים (כנראה האלקטרון של הדאוטריום) למהירות שמעל מהירות האור במים ויצירת גל ההלם של צ'רנקוב. בתגובת הזרם הנייטרלי יכולים להשתתף גם הנייטרינים הכבדים (למעשה גם ב- KamiokaNDeיכולים נייטרינים כבדים להתגלות אך חתכי הפעולה קטנים מדי). התבניות של גלי צ'רנקוב של ה-CC וה-NC שונות זה מזה ואפשר להבחין ביניהן. אם שטף הנייטרינים בערוץ ה-NC יהיה גדול מהשטף בערוץ ה-CC, יש בכך הוכחה חזקה מאוד לתנודות נייטרינים (כאמור בפיסיקה הישנה לא אמורים להיות ניטרינים סולריים כבדים כלל). ואכן זוהי בדיוק התוצאה (אפריל 2002): סך כל השטף תואם למלוא השטף הצפוי ע"פ מודל השמש, אך רק כ-30-50% ממנו הם נייטרינים בטעם אלקטרוני (!). גם ב-SNO המגבלה היא של אנרגיית סף גבוה (6.75 Mev).
הפרוייקט הבא של סוכנות המחקר האירופאית, במעבדה של Gran Sasso, איטליה, הוא גלאי Real-time של אנרגיות נמוכות. למעשה יש 2 כאלו. בפרוייקט Borexino משתמשים בגלאיliquid scintillator ללכידת נייטרינים מסוג 7Be בתגובת זרם נייטרלי (תגובה של פיזור אלסטי). הפרוייקט השני ( LENS (Low Energies Neutrino Spectrometer מתוכנן ללכוד את השטף החזק ביותר של נייטרינים סולריים – סוג ה-pp. הפרויקט שהיה אמור להתחיל לפעול לפני כשנתיים אמור להשתמש בגלאי liquid scintillator עם חומר בעל סף אנרגיה נמוך במיוחד (0.25 או 0.3 מא"ו) – 176Yb (כנראה כ-20 טון). בתגובת זרם טעון אחד הנייטרונים בגרעין פולט אלקטרון (והופך לפרוטון). הגרעין התוצר *176Lu הוא רדיאקטיבי ופולט חלקיק גמא (פוטון). גם האלקטרון וגם הפוטון מיצרים סיגנל צ'רנקוב אופייני. הופעת 2 הסיגנלים בהפרש של כמה עשרות nanoseconds, יכול להיות סימן זיהוי ברור של לכידת נייטרינו ולאפשר אבחנה בינו לבין סיגנל רעש רקע טבעי גדול מאוד האופייני לתחום האנרגיות הנמוכות. לסיכום, התוצאות נכון לשנה שעברה, מלמדות כי התוצאות הנסיוניות מתיישבות עם קיום "פיזיקה חדשה" בה יש לנייטרינים הכבדים מסת מנוחה של עשיריות או מאיות של אלקטרון-וולט. מודל השמש הסטנדרטי מתיישב עם שטפי הנייטרינים הסולריים המתקבלים, בהנחה שכ-60% מהם הפכו תוך כדי מעברם בליבת השמש לנייטרינים כבדים. תוצאות אלו מתאשרות ע"י ניסויים ותצפיות בנייטרינים מכל המקורות: סולריים, אטמוספריים (נייטרינים קוסמיים המגלים דוקא העלמות של נייטריני מיואון) ונייטרינים מכורים (שהם למעשה אנטי נייטרינים שם מתגלה העלמות של נייטרינים כבדים).
נעצור כאן תוך ציון בקצרה של העובדות הבאות: לפחות עשרה פרוייקטים עם גלאים שונים וחדשים של מצפי נייטרינים נמצאים בתכנון או בהקמה, כך שהתחום כנראה עדיין רחוק ממיצוי. בסקירה זו התעלמתי מתחום שלם ואף עשיר יותר מזה של הנייטרינים הסולריים. והוא התחום של מחקר הנייטרינים הנוצרים בכורים גרעיניים. אלו הם בד"כ אנטי-נייטרינים עשירים במיוחד בנייטרינים כבדים הנוצרים כתוצרי לואי של התפרקויות רדיו-אקטיביות. כאן מקבלים שטפים חזקים עם מגוון אנרגיות עשיר ביותר. פרוייקטים רבים עסקו בגילוי הנייטרינים הנ"ל באמצעות הגלאים השונים. אחד הכיוונים הנוגע במיוחד לענייננו הם ניסויים בהם ניסו לגלות העלמות של אנטי-נייטרינים בטעם מיואון ועודף של אנטי-נייטרינים בטעם אלקטרון. זו יכולה להיות הוכחה משלימה ובלתי תלוייה למסה של הנייטרינים ולקיום תנודות נייטרינים (התנודות כאן הן תנודות ואקום שבהן אין תגובה עם חומר, כמו בתנודות MSW). אחד הניסויים האלו היה ניסוי ה-LSND (1994-1998) של לוס אלאמוס בו השתמשו בגלאי liquid scintillator כדי לחפש תנודות של נייטריני-מיואון הנוצרים בראקציות גרעיניות המופעלות ע"י קרן פרוטונים. בניסוי זה פרצה מהומה כאשר פורסם כי התגלה עודף של אנטי-נייטריני אלקטרון. ערכי המסות המתאימים לתוצאותיהם היו חריגים ביחס לתוצאות ניסויים אחרים. אחד החוקרים (ד"ר היל) טען/גילה כי התוצאות היו לא משמעותיות ביחס לרעש הניסוי. (בינתיים (2003) התפרסמו תוצאות של KamLand, פרוייקט חדש של Kamioka העוסק אף הוא בהעלמות נייטריני כורים ושם דוקא מדובר על דפיציט של אנטי-נייטריני אלקטרון). נראה שגם מכיוון זה מתגבש קונסנזוס שתנודות נייטרינו אכן קיימות. בתגובה הבאה אנסה להסביר את הקשר בין מסות נייטרינים ליכולתם להתנודד ולהעלם ומה מסתתר מאחרי הכותרות של "פיסיקה ישנה" ו"פיסיקה חדשה".
|
|