|
השרטוט מתאר היטב את מה שהתכוונתי להסביר, ומדגים (בתשובה לשאלת האלמוני) שאין צורך בשלב נוסף כדי להפוך את הטורוס.
לגבי היפוך במובן החזק יותר, הוכחת כבר בתגובה 156525 ש*לא ניתן* לעוות טורוס מנוקב (במרחב התלת-ממדי) כך שרק הצד יתהפך: אחרת, אפשר היה לשחק בשתי גומיות עד שהן מושחלות זו בזו (וכולם יודעים שרק קוסמים יכולים לעשות דברים כאלה).
בעזרת שמורות חד-ממדיות כאלה אפשר להוכיח עוד טענות אי-אפשר על משטחים. "תורת הקשרים" (knot theory) עוסקת בתכונות של לולאות סגורות המעוותות לצורת קשר (או איחוד של כמה כאלה). מציאת שמורות, בעזרתן מוכיחים שלא ניתן לעוות קשר אחד לקשר אחר, מהווה אחד הענפים המרכזיים של תורת הקשרים. מעניין לציין שכל התכונות של קשרים מיוחדות למרחב התלת-ממדי: במרחב ממימד גבוה יותר אפשר להפוך כל קשר ללולאה סגורה "פשוטה".
לשאלות אחרות על טורוסים, אני ממליץ לעבור להצגה שבה אנחנו-המתמטיקאים משתמשים: בדיוק כפי שלולאה היא קו ישר שנקודות הקצה שלו הודבקו, וצינור הוא ריבוע ששתי צלעות נגדיות שלו הודבקו (באותו כיוון), כך טורוס אפשר לקבל מריבוע ששני זוגות הצלעות שלו הודבקו (באותו כיוון). היתרון הוא שיותר קל לצייר (ולחשוב על) ריבועים, מאשר טורוסים.
שאלה לסיום: 1. מה מקבלים אם מדביקים זוג צלעות נגדיות של ריבוע, תוך הפיכת הכיוון? 2. ואם מדביקים זוג אחד בכיוון הנכון, ואת השני בכיוונים הפוכים? 3. ומה קורה כששני הזוגות מודבקים בכיוונים הפוכים?
(התשובה במהופך: 1 - טבעת מביוס, 2 - בקבוק קליין; 3 - נסו לבד).
|
|