|
||||
|
||||
שם אין את המכפלה הפנימית המדוברת. |
|
||||
|
||||
מהי המכפלה הפנימית המדוברת? |
|
||||
|
||||
הטור המדובר (שאינו מתכנס, לא! לא מתכנס! אל תחזירו אותי אל החדר המרופד! הצילו!), אמור להיות התוצאה של מכפלה פנימית כלשהי. מהי המכפלה הפנימית הזו? |
|
||||
|
||||
המכפלה של שני מצבי מקום שונים בהצגת האנרגיה של חלקיק חד ממדי בקופסא. |
|
||||
|
||||
<r|r'>?
|
|
||||
|
||||
אם כי, ד. פר השתמש בx |
|
||||
|
||||
אוקיי. אז... כולם טועים, ורק אני צודק. ומה שאני אומר, הוא: זו לא מכפלה פנימית במובן הרגיל של המלה בכלל, כי אלה לא איברים ב-L^2. מתחילים מלהגדיר אותם כברהים, ואז מגדירים קטים לצורך פישוט נוטציה - רק אם מבינים את תורת ההתפלגויות, אפשר בכלל להבין במה מדובר מבחינה מתמטית. ולדיון סוף. וזה בכלל לא קשור לכל טור שהוא. לטור אין סכום, והוא לא מתכנס. ביי. |
|
||||
|
||||
המובן ה"רגיל" של המילה הוא לא בL2, אלא בברא ובקט. המערכת (המדוברת) מוגדרת ע"י המצבים העצמיים של אופרטור האנרגיה E (שהוא אופרטור מדידה), כאשר נתון שיש מספר אין סופי בר מניה של מצבים כאלה, שמסומנים ע"י |n> (n=1,2,3,...) . ד. פר מנסה להכניס אופרטור מדידה נוסף, רציף, בעל ערכים עצמיים בין 0 ל פאי, x, כך שההיטל של מצב עצמי שלו על אופרטור האנרגיה הוא:<x|n>=A*sin(nx) ואז, לנסות ולחשב את המכפלה של שני מצבים עצמיים של האופרטור x (תגובה 107580).
|
|
||||
|
||||
טוב... אז אולי צריך להגיע למסקנה שאין אופרטור מדידה רציף כזה, במקום להתחיל לטעון שלטורים שלא מתכנסים יש גבול? |
|
||||
|
||||
כמובן, על זה הסכמנו בהתחלה (אופרטור מדידה צריך להיות complete), מספר הערכים העצמיים של כל אופרטור מדידה במערכת ההיא צריך להיות קטן או שווה למספר הערכים העצמיים של אופרטור האנרגיה. אין לזה קשר לטענה השניה. |
|
||||
|
||||
רגע: אין אופרטור כזה, ואתה מתפלא שמכ"פ בין וקטורים עצמיים שלו לא מתכנסת? |
|
||||
|
||||
לא אופרטור מדידה, לא עם הערכים העצמיים האלה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |